Toggle light / dark theme

KILL.THE.ROBOTS
The Golden Rule is Not for Toasters

Simplistically nutshelled, talking about machine morality is picking apart whether or not we’ll someday have to be nice to machines or demand that they be nice to us.

Well, it’s always a good time to address human & machine morality vis-à-vis both the engineering and philosophical issues intrinsic to the qualification and validation of non-biological intelligence and/or consciousness that, if manifested, would wholly justify consideration thereof.

Uhh… yep!

But, whether at run-on sentence dorkville or any other tech forum, right from the jump one should know that a single voice rapping about machine morality is bound to get hung up in and blinded by its own perspective, e.g., splitting hairs to decide who or what deserves moral treatment (if a definition of that can even be nailed down), or perhaps yet another justification for the standard intellectual cul de sac:
“Why bother, it’s never going to happen.“
That’s tired and lame.

One voice, one study, or one robot fetishist with a digital bullhorn — one ain’t enough. So, presented and recommended here is a broad-based overview, a selection of the past year’s standout pieces on machine morality.The first, only a few days old, is actually an announcement of intent that could pave the way to forcing the actual question.
Let’s then have perspective:

Building a Brain — Being Humane — Feeling our Pain — Dude from the NYT
February 3, 2013 — Human Brain Project: Simulate One
Serious Euro-Science to simulate a human brain. Will it behave? Will we?

January 28, 2013 — NPR: No Mercy for Robots
A study of reciprocity and punitive reaction to non-human actors. Bad robot.

April 25, 2012 — IEEE Spectrum: Attributing Moral Accountability to Robots
On the human expectation of machine morality. They should be nice to me.

December 25, 2011 — NYT: The Future of Moral Machines
Engineering (at least functional) machine morality. Broad strokes NYT-style.

Expectations More Human than Human?
Now, of course you’re going to check out those pieces you just skimmed over, after you finish trudging through this anti-brevity technosnark©®™ hybrid, of course. When you do — you might notice the troubling rub of expectation dichotomy. Simply put, these studies and reports point to a potential showdown between how we treat our machines, how we might expect others to treat them, and how we might one day expect to be treated by them. For now morality is irrelevant, it is of no consideration nor consequence in our thoughts or intentions toward machines. But, at the same time we hold dear the expectation of reasonable treatment, if not moral, by any intelligent agent — even an only vaguely human robot.

Well what if, for example: 1. AI matures, and 2. machines really start to look like us?
(see: Leaping Across Mori’s Uncanny Valley: Androids Probably Won’t Creep Us Out)

Even now should someone attempt to smash your smartphone or laptop (or just touch it), you of course protect the machine. Extending beyond concerns over the mere destruction of property or loss of labor, could one morally abide harm done to one’s marginally convincing humanlike companion? Even if fully accepting of its artificiality, where would one draw the line between economic and emotional damage? Or, potentially, could the machine itself abide harm done to it? Even if imbued with a perfectly coded algorithmic moral code mandating “do no harm,” could a machine calculate its passive non-response to intentional damage as an immoral act against itself, and then react?

Yeah, these hypotheticals can go on forever, but it’s clear that blithely ignoring machine morality or overzealously attempting to engineer it might result in… immorality.

Probably Only a Temporary Non-Issue. Or Maybe. Maybe Not.
There’s an argument that actually needing to practically implement or codify machine morality is so remote that debate is, now and forever, only that — and oh wow, that opinion is superbly dumb. This author has addressed this staggeringly arrogant species-level macro-narcissism before (and it was awesome). See, outright dismissal isn’t a dumb argument because a self-aware machine or something close enough for us to regard as such is without doubt going to happen, it’s dumb because 1. absolutism is fascist, and 2. to the best of our knowledge, excluding the magic touch of Jesus & friends or aliens spiking our genetic punch or whatever, conscious and/or self-aware intelligence (which would require moral consideration) appears to be an emergent trait of massively powerful computation. And we’re getting really good at making machines do that.

Whatever the challenge, humans rarely avoid stabbing toward the supposedly impossible — and a lot of the time, we do land on the moon. The above mentioned Euro-project says it’ll need 10 years to crank out a human brain simulation. Okay, respectable. But, a working draft of the human genome, an initially 15-year international project, was completed 5 years ahead of schedule due largely to advances in brute force computational capability (in the not so digital 1990s). All that computery stuff like, you know, gets better a lot faster these days. Just sayin.

So, you know, might be a good idea to keep hashing out ideas on machine morality.
Because who knows what we might end up with…

Oh sure, I understand, turn me off, erase me — time for a better model, I totally get it.
- or -
Hey, meatsack, don’t touch me or I’ll reformat your squishy face!

Choose your own adventure!

[HUMAN BRAIN PROJECT]
[NO MERCY FOR ROBOTS — NPR]
[ATTRIBUTING MORAL ACCOUNTABILITY TO ROBOTS — IEEE]
[THE FUTURE OF MORAL MACHINES — NYT]

This piece originally appeared at Anthrobotic.com on February 7, 2013.


LEFT: Activelink Power Loader Light — RIGHT: The Latest HAL Suit

New Japanese Exoskeleton Pushing into HAL’s (potential) Marketshare
We of the robot/technology nerd demo are well aware of the non-ironically, ironically named HAL (Hybrid Assistive Limb) exoskeletal suit developed by Professor Yoshiyuki Sankai’s also totally not meta-ironically named Cyberdyne, Inc. Since its 2004 founding in Tsukuba City, just north of the Tokyo metro area, Cyberdyne has developed and iteratively refined the force-amplifying exoskeletal suit, and through the HAL FIT venture, they’ve also created a legs-only force resistance rehabilitation & training platform.

Joining HAL and a few similar projects here in Japan (notably Toyota’s & Honda’s) is Kansai based & Panasonic-owned Activelink’s new Power Loader Light (PLL). Activelink has developed various human force amplification systems since 2003, and this latest version of the Loader looks a lot less like its big brother the walking forklift, and a lot more like the bottom half & power pack of a HAL suit. Activelink intends to connect an upper body unit, and if successful, will become HAL’s only real competition here in Japan.
And for what?

Well, along with general human force amplification and/or rehab, this:


福島第一原子力発電所事故 — Fukushima Daiichi Nuclear Disaster Site

Fukushima Cleanup & Recovery: Heavy with High-Rads
As with Cyberdyne’s latest radiation shielded self-cooling HAL suit (the metallic gray model), Activelink’s PLL was ramped up after the 2011 Tohoku earthquake, tsunami, and resulting disaster at the Fukushima Daiichi Power Plant. Cleanup at the disaster area and responding to future incidents will of course require humans in heavy radiation suits with heavy tools possibly among heavy debris.While specific details on both exoskeletons’ recent upgrades and deployment timeline and/or capability are sparse, clearly the HAL suit and the PLL are conceptually ideal for the job. One assumes both will incorporate something like 20-30KG/45-65lbs. per limb of force amplification along with fully supporting the weight of the suit itself, and like HAL, PLL will have to work in a measure of radiological shielding and design consideration. So for now, HAL is clearly in the lead here.

Exoskeleton Competition Motivation Situation
Now, the HAL suit is widely known, widely deployed, and far and away the most successful of its kind ever made. No one else in Japan — in the world — is actually manufacturing and distributing powered exoskeletons at comparable scale. And that’s awesome and all due props to Professor Sankai and his team, but in taking stock of the HAL project’s 8 years of ongoing development, objectively one doesn’t see a whole lot of fundamental advancement. Sure, lifting capacity has increased incrementally and the size of the power source & overall bulk have decreased a bit. And yeah, no one else is doing what Cyberdyne’s doing, but that just might be the very reason why HAL seems to be treading water — and until recently, e.g., Activelink’s PLL, no one’s come along to offer up any kind of alternative.

Digressively Analogizing HAL with Japan & Vice-Versa Maybe
What follows is probably anecdotal, but probably right: See, Japanese economic and industrial institutions, while immensely powerful and historically cutting-edge, are also insular, proud — and weirdly — often glacially slow to innovate or embrace new technologies. With a lot of relatively happy workers doing excellent engineering with unmatched quality control and occasional leaps of innovation, Japan’s had a healthy electronics & general tech advantage for a good long time. Okay but now, thorough and integrated globalization has monkeywrenched the J-system, and while the Japanese might be just as good as ever, the world has caught up. For example, Korea’s big two — Samsung & LG — are now selling more TVs globally than all Japanese makers combined. Okay yeah, TVs ain’t robots, but across the board competition has arrived in a big way, and Japan’s tech & electronics industries are faltering and freaking out, and it’s illustrative of a wider socioeconomic issue. Cyberdyne, can you dig the parallel here?

Back to the Robot Stuff: Get on it, HAL/Japan — or Someone Else Will
A laundry list of robot/technology outlets, including Anthrobotic & IEEE, puzzled at how the first robots able to investigate at Fukushima were the American iRobot PackBots & Warriors. It really had to sting that in robot loving, automation saturated, theretofore 30% nuclear-powered Japan, there was no domestically produced device nimble enough and durable enough to investigate the facility without getting a radiation BBQ (the battle-tested PackBots & Warriors — no problem). So… ouch?

For now, HAL & Japan lead the exoskeletal pack, but with a quick look at Andra Keay’s survey piece over at Robohub it’s clear that HAL and the PLL are in a crowded and rapidly advancing field. So, if the U.S. or France or Germany or Korea or the Kiwis or whomever are first to produce a nimble, sufficiently powered, appropriately equipped, and ready-for-market & deployment human amplification platform, Japanese energy companies and government agencies and disaster response teams just might add those to cart instead. Without rapid and inspired development and improvement, HAL & Activelink, while perhaps remaining viable for Japan’s aging society industry, will be watching emergency response and cleanup teams at home with their handsome friend Asimo and his pet Aibo, wondering whatever happened to all the awesome, innovative, and world-leading Japanese robots.

It’ll all look so real on a 80-inch Samsung flat-panel HDTV.

Activelink Power Loader — Latest Model


Cyberdyne, Inc. HAL Suit — Latest Model
http://youtu.be/xwzYjcNXlFE

SOURCES & INFO & STUFF
[HAL SUIT UPGRADE FOR FUKUSHIMA — MEDGADGET]
[HAL RADIATION CONTAMINATION SUIT DETAILS — GIZMAG]
[ACTIVELINK POWER LOADER UPDATE — DIGINFO.TV]

[TOYOTA PERSONAL MOBILITY PROJECTS & ROBOT STUFF]
[HONDA STRIDE MANAGEMENT & ASSISTIVE DEVICE]

[iROBOT SENDING iROBOTS TO FUKUSHIMA — IEEE]
[MITSUBISHI NUCLEAR INSPECTION BOT]

For Fun:
[SKELETONICS — CRAZY HUMAN-POWERED PROJECT: JAPAN]
[KURATAS — EVEN CRAZIER PROJECT: JAPAN]

Note on Multimedia:
Main images were scraped from the above Diginfo.tv & AFPBBNEWS
YouTube videos, respectively. Because there just aren’t any decent stills
out there — what else is a pseudo-journalist of questionable competency to do?

This piece originally appeared at Anthrobotic.com on January 17, 2013.

I was recently accused on another blog of repeating a defeatist mantra.

My “mantra” has always been WE CAN GO NOW. The solutions are crystal clear to anyone who takes a survey of the available technology. What blinds people is their unwillingness to accept the cost of making it happen.
There is no cheap.

Paul Gilster comments on his blog Centauri Dreams, concerning Radiation, Alzheimer’s Disease and Fermi;

“Neurological damage from human missions to deep space — and the study goes no further than the relatively close Mars — would obviously affect our planning and create serious payload constraints given the need for what might have to be massive shielding.”

Massive shielding.
This is the game changer. The showstopper. The sea change. The paradigm shift.
The cosmic ray gorilla. Whatever you want to call it, it is the reality that most of what we are familiar with concerning human space flight is not going to work in deep space.
Massive Shielding=Nuclear Propulsion=Bombs
M=N=B
We have to transport nuclear materials to the Moon where we can light off a nuclear propulsion system. The Moon is where the ice-derived Water to fill up a Massive radiation shield is to be found.
Massive Shield=Water=Lunar Base
M=W=L
Sequentially: L=W=M=N=B
So, first and last, we need an HLV to get to this Lunar Base (where the Water for the shield is) and we need to safely transport Nuclear material there (and safely assemble and light off the Bombs to push the shield around).

Radiation shielding is the first determining factor in spaceship design and this largely determines the entire development of space travel.

http://voices.yahoo.com/water-bombs-8121778.html?cat=15

http://www.sciencedaily.com/releases/2012/12/121231180632.htm

Excerpt: “Galactic cosmic radiation poses a significant threat to future astronauts,” said M. Kerry O’Banion, M.D., Ph.D., a professor in the University of Rochester Medical Center (URMC) Department of Neurobiology and Anatomy and the senior author of the study. “The possibility that radiation exposure in space may give rise to health problems such as cancer has long been recognized. However, this study shows for the first time that exposure to radiation levels equivalent to a mission to Mars could produce cognitive problems and speed up changes in the brain that are associated with Alzheimer’s disease.”

It appears when Eugene Parker wrote “Shielding Space Travelers” in 2006 he was right- and all the private space sycophants claiming radiation mitigation is trivial are wrong.

Only a massive water shield a minimum of 14 feet thick and massing 400 tons for a small capsule can shield human beings in deep space on long duration missions. And since a small capsule will not have sufficient space to keep a crew psychologically healthy on a multi-year journey it is likely such a shield will massive over a thousand tons.

This mass may seem to make Human Space Flight Beyond Earth and Lunar Orbit (HSF-BELO) impractical but in fact it is not an obstacle but an enabler. Nuclear Pulse Propulsion using bombs to push a spaceship to the outer solar sytem becomes more efficient the larger the ship and this amount of water is useful in a closed loop life support system.

Lighting off bombs in the Earth’s magnetosphere is not acceptable and this points to the Moon as the obvious place to launch nuclear missions and also to acquire the water for radiation shielding. The Space Launch System (SLS) is the human-rated Heavy Lift Vehicle (HLV) with a powerful escape system that can safely transport the required fissionables to the Moon.

2013 may be the year of the comet and the year of the spaceship if the two goals of protecting the planet from impacts and establishing off world colonies are finally recognized as vital to the survival of humankind.

I’d like to announce the start of the Indiegogo.com campaign for Software Wars, the movie. It is called Software Wars, but it also talks about biotechnology, the space elevator and other futuristic topics. This movie takes many of the ideas I’ve posted here and puts them into video form. It will be understandable to normal people but interesting to people like us. I would appreciate the support of Lifeboat for this project.

Using an innocuous bacterial virus, bioengineers have created a biological mechanism to send genetic messages from cell to cell. The system greatly increases the complexity and amount of data that can be communicated between cells and could lead to greater control of biological functions within cell communities…

In harnessing DNA for cell-cell messaging the researchers have also greatly increased the amount of data they can transmit at any one time. In digital terms, they have increased the bit rate of their system. The largest DNA strand M13 is known to have packaged includes more than 40,000 base pairs. Base pairs, like 1s and 0s in digital encoding, are the basic building blocks of genetic data. Most genetic messages of interest in bioengineering range from several hundred to many thousand base pairs.

Ortiz was even able to broadcast her genetic messages between cells separated by a gelatinous medium at a distance of greater than 7 centimeters.

“That’s very long-range communication, cellularly speaking,” she said.

Down the road, the biological Internet could lead to biosynthetic factories in which huge masses of microbes collaborate to make more complicated fuels, pharmaceuticals and other useful chemicals. With improvements, the engineers say, their cell-cell communication platform might someday allow more complex three-dimensional programming of cellular systems, including the regeneration of tissue or organs.

Continue reading “Stanford Bioengineers Introduce ‘Bi-Fi’ — The Biological Internet”

I have been meaning to read a book coming out soon called Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves. It’s written by Harvard biologist George Church and science writer Ed Regis. Church is doing stunning work on a number of fronts, from creating synthetic microbes to sequencing human genomes, so I definitely am interested in what he has to say. I don’t know how many other people will be, so I have no idea how well the book will do. But in a tour de force of biochemical publishing, he has created 70 billion copies. Instead of paper and ink, or pdf’s and pixels, he’s used DNA.

Much as pdf’s are built on a digital system of 1s and 0s, DNA is a string of nucleotides, which can be one of four different types. Church and his colleagues turned his whole book–including illustrations–into a 5.27 MB file–which they then translated into a sequence of DNA. They stored the DNA on a chip and then sequenced it to read the text. The book is broken up into little chunks of DNA, each of which has a portion of the book itself as well as an address to indicate where it should go. They recovered the book with only 10 wrong bits out of 5.27 million. Using standard DNA-copying methods, they duplicated the DNA into 70 billion copies.

Scientists have stored little pieces of information in DNA before, but Church’s book is about 1,000 times bigger. I doubt anyone would buy a DNA edition of Regenesis on Amazon, since they’d need some expensive equipment and a lot of time to translate it into a format our brains can comprehend. But the costs are crashing, and DNA is a far more stable medium than that hard drive on your desk that you’re waiting to die. In fact, Regenesis could endure for centuries in its genetic form. Perhaps librarians of the future will need to get a degree in biology…

Link to Church’s paper

Source

I do not regret voting for this President and I would and will do it again. However.……I am not happy about our space program. Not at all. One would think there would be more resistance concerning the privatization of space and the inferior launch vehicles being tested or proposed. Indeed there would be objections except for a great deception being perpetrated on a nation ignorant of the basic facts about space flight. The private space gang has dominated public discourse with very little answering criticism of their promises and plans.
This writer is very critical of the flexible path.

It is a path to nowhere.

Compared to the accomplishments of NASA’s glory days, there is little to recommend the players in the commercial crew game. The most fabulous is Space X, fielding a cheap rocket promising cheap lift. There is so little transparency concerning the true cost of their launches that one space-faring nation has called the bluff and stated SpaceX launch prices are impossible. The Falcon 9, contrary to stellar advertising, is a poor design in so many ways it is difficult to know where to begin the list. The engines are too small and too many, the kerosene propellant is inferior to hydrogen in the upper stage, and promising to reuse spent hardware verges on the ridiculous. Whenever the truth about the flexible path is revealed, the sycophants begin to wail and gnash their teeth.

The latest craze is the Falcon “heavy.” The space shuttle hardware lifted far more, though most of the lift was wasted on the orbiter. With 27 engines the faux heavy is a throwback to half a century ago when clusters of small engines were required due to nothing larger being available. The true heavy rocket of the last century had five engines and the number of Falcon engines it would take to match the Saturn V proves just how far the mighty have fallen.

Long, long posts, doubling as SpaceX advertisements, swamp any forum where the deception is exposed. The most popular and endlessly repeated dogma concerns fuel depots. Refueling in space is hyped as the answer to all problems. Unfortunately the chances of making it work with the selected propellant- liquid hydrogen- are not good. This kind of blasphemy is sure to bring howls of protest on any forum where it appears. The sad truth is the American people are being conned into throwing away the Heavy Lift Infrastructure that is the only path to Beyond Earth Orbit Human Space Flight. SpaceX is more of an exploitation company to charge the taxpayer twice than aerospace company. Everything they are pushing- from the engine design to friction stir welded stages, to the heat shield on the capsule has all been developed by NASA on the taxpayers dime. They use NASA labs and engineers for token payment and then advertise low prices. It is a scam. Worse than a scam, it is a distraction from and drain on funds from the only real possibility for space travel on the horizon; the Space Launch System (SLS).

LEO is not space exploration. It is not space travel. It may have qualified as space flight at one time but not anymore. It is endless circles at very high altitude. If any achievement deserves the “been there” scoff it is Low Earth Orbit.

Human beings left Earth at 24,200 mph (38,938 km/hr) in December of 1968. In December of 1972 we returned and have not gone back. We did continue Heavy Lift launches after Apollo with the Space Shuttle- but the STS did not launch humans beyond earth orbit. Due to lack of funding the Shuttle regrettably launched a hundred tons of wings, landing gear, and never full cargo bay over one hundred times so they could come right back. What little stayed up there at very high altitude going in circles is that higher price tag people cry about.

To expand the human race into the solar system requires nuclear energy. We will not be assembling, testing, and lighting off any nuclear systems in LEO. We do however have a human rated capsule with a powerful escape system almost ready that is suitable for transporting fissionables directly to the Moon- where we can assemble, test, and light off nukes. To send that capsule directly to the moon, and the human beings to construct a base that can support a nuclear mission, we need an HLV with hydrogen upper stages. The hydrogen upper stages are what made Apollo successful by making a heavy payload go fast. That vehicle is a few years away and sooner with more money. The DOD has vast resources it expends on weapons that do not protect us from two clear and present dangers; impacts and plagues. I often give examples on this site of “cold war toys” that are “hideously expensive” and do not seem to work right or do anything magical. That big rocket is the magic that will open the solar system to human colonization. Private space efforts are not capable of making any of it happen. This is why I consider the whole “new space” movement as being essentially rich hobbyists selling tourist trips. My thoughts on this “narrow and inflexible path” are based largely on the work of Freeman Dyson and Eugene Parker- and the discovery of millions of tons of water on the Moon.

Despite having “been there,” the Moon is the next step in opening up the solar system to human exploration and colonization. Low Earth Orbit is being sold as space travel even though to travel, you have to go somewhere. The battle cry of “cheap lift” is promoting the equivalent of the “liar loans” that wrecked the housing market. Falling for this something for nothing too good to be true rip-off will leave the U.S. trapped. Decades more of nothing but more endless circles at very high altitude. Mars is used as a marketing gimmick but is really just a rock with a deep gravity well. Everyone seems to think it is “just close enough” for chemical propulsion. It is not. If you are going to build the necessary Atomic Spaceship (and we would have to have a moonbase to launch a nuclear mission) you might as well go someplace really interesting.

All those places are in the outer solar system.
http://www.sciencedaily.com/releases/2012/06/120628190006.htm
To establish a moonbase requires the Space Launch System to be put into service. There is no substitute for a Heavy Lift Vehicle with hydrogen upper stages.

The 130 ton lift of the proposed SLS is also at this time slated to be used as a crew vehicle. This was one of the worst mistakes of the shuttle program. The crew capsules being tested and built by SpaceX and Boeing pack seven astronauts into a vehicle without a proper escape system and, in the case of SpaceX, doubling as a cargo vehicle. Both of these vehicles have an escape-system-that-is-not-an-escape-system. These underpowered hypergolic systems are not very good at saving a crew but will work great raising the orbit of tourist space stations. This is another one of those worst mistakes being repeated.

Infomercial hype aside, the falcon “heavy” and Delta IV are not HLV’s. This misinformation deceives the public and makes the average citizen think the SpaceX hobby rocket is a Saturn V. At a thrust of around 100,000 pounds each it would take 72 merlins to equal the thrust of the SRB’s on SLS, not counting what the 4 liquid hydrogen engines also produce- with much greater efficiency than Kerosene.

The real problem with the U.S. space program is obvious to anyone looking at how much money is spent by the DOD. It is always interesting to hear sermons about how critical surveillance satellites are to fighting illiterate mountain tribesman. Any DOD contractor hearing complaints about NASA wasting money breaks down in maniacal laughter. One of my favorite talking points is that we can train our young people to clear buildings with automatic weapons or we can train them to build spaceships; either way the money will get spent.

Take a look at military spending increases and it is obvious funding for spaceflight can go up. And there IS a valid DOD mission BEO and BELO (Beyond Earth and Lunar Orbit). The valid military mission is impact defense and establishing outposts in the outer system- but this is hard money the aerospace industry wants nothing to do with. Unlike so many easy money weapon systems, spaceships have to actually work.

http://www.sciencedaily.com/releases/2012/09/120905134912.htm

It is a race against time- will this knowledge save us or destroy us? Genetic modification may eventually reverse aging and bring about a new age but it is more likely the end of the world is coming.

The Fermi Paradox informs us that intelligent life may not be intelligent enough to keep from destroying itself. Nothing will destroy us faster or more certainly than an engineered pathogen (except possibly an asteroid or comet impact). The only answer to this threat is an off world survival colony. Ceres would be perfect.

A secret agent travels to a secret underground desert base being used to develop space weapons to investigate a series of mysterious murders. The agent finds a secret transmitter was built into a supercomputer that controls the base and a stealth plane flying overhead is controlling the computer and causing the deaths. The agent does battle with two powerful robots in the climax of the story.

Gog is a great story worthy of a sci fi action epic today- and was originally made in 1954. Why can’t they just remake these movies word for word and scene for scene with as few changes as possible? The terrible job done on so many remade sci fi classics is really a mystery. How can such great special effects and actors be used to murder a perfect story that had already been told well once? Amazing.

In contrast to Gog we have the fairly recent movie Stealth released in 2005 that has talent, special effects, and probably the worst story ever conceived. An artificially intelligent fighter plane going off the reservation? The rip-off of HAL from 2001 is so ridiculous.

Fantastic Voyage (1966) was a not so good story that succeeded in spite of stretching suspension of disbelief beyond the limit. It was a great movie and might succeed today if instead of miniaturized and injected into a human body it was instead a submarine exploring a giant organism under the ice of a moon in the outer solar system. Just an idea.

And then there is one of the great sci-fi movies of all time if one can just forget the ending. The Abyss of 1989 was truly a great film in that aquanauts and submarines were portrayed in an almost believable way.

From wiki: The cast and crew endured over six months of grueling six-day, 70-hour weeks on an isolated set. At one point, Mary Elizabeth Mastrantonio had a physical and emotional breakdown on the set and on another occasion, Ed Harris burst into spontaneous sobbing while driving home. Cameron himself admitted, “I knew this was going to be a hard shoot, but even I had no idea just how hard. I don’t ever want to go through this again”

Again, The Abyss, like Fantastic Voyage, brings to mind those oceans under the icy surface of several moons in the outer solar system.

I recently watched Lockdown with Guy Pearce and was as disappointed as I thought I would be. Great actors and expensive special effects just cannot make up for a bad story. When will they learn? It is sad to think they could have just remade Gog and had a hit.

The obvious futures represented by these different movies are worthy of consideration in that even in 1954 the technology to come was being portrayed accurately. In 2005 we have a box office bomb that as a waste of money is parallel to the military industrial complex and their too-good-to-be-true wonder weapons that rarely work as advertised. In Fantastic Voyage and The Abyss we see scenarios that point to space missions to the sub-surface oceans of the outer planet moons.

And in Lockdown we find a prison in space where the prisoners are the victims of cryogenic experimentation and going insane as a result. Being an advocate of cryopreservation for deep space travel I found the story line.……extremely disappointing.