Toggle light / dark theme

I was recently accused on another blog of repeating a defeatist mantra.

My “mantra” has always been WE CAN GO NOW. The solutions are crystal clear to anyone who takes a survey of the available technology. What blinds people is their unwillingness to accept the cost of making it happen.
There is no cheap.

Paul Gilster comments on his blog Centauri Dreams, concerning Radiation, Alzheimer’s Disease and Fermi;

“Neurological damage from human missions to deep space — and the study goes no further than the relatively close Mars — would obviously affect our planning and create serious payload constraints given the need for what might have to be massive shielding.”

Massive shielding.
This is the game changer. The showstopper. The sea change. The paradigm shift.
The cosmic ray gorilla. Whatever you want to call it, it is the reality that most of what we are familiar with concerning human space flight is not going to work in deep space.
Massive Shielding=Nuclear Propulsion=Bombs
M=N=B
We have to transport nuclear materials to the Moon where we can light off a nuclear propulsion system. The Moon is where the ice-derived Water to fill up a Massive radiation shield is to be found.
Massive Shield=Water=Lunar Base
M=W=L
Sequentially: L=W=M=N=B
So, first and last, we need an HLV to get to this Lunar Base (where the Water for the shield is) and we need to safely transport Nuclear material there (and safely assemble and light off the Bombs to push the shield around).

Radiation shielding is the first determining factor in spaceship design and this largely determines the entire development of space travel.

http://voices.yahoo.com/water-bombs-8121778.html?cat=15

I recently posted this on the only two other sites that will allow me to express my opinions;

I see the problem as one of self similarity; trying to go cheap being the downfall of all these schemes to work around human physiology.

When I first became interested in space travel several years ago I would comment on a couple blogs and find myself constantly arguing with private space proponents- and saying over and over again, “there is no cheap.” I was finally excommunicated from that bunch and banned from posting. They would start calling me an idiot and other insults and when I tried to return the favor the moderator would block my replies. The person who runs those two sites works for a firm promoting space tourism- go figure.

The problem is that while the aerospace industry made some money off the space program as an outgrowth of the military industrial complex, it soon became clear that spaceships are hard money- they have to work. The example of this is the outrage over the Apollo 1 fire and subsequent oversight of contractors- a practice which disappeared after Apollo and resulted in the Space Shuttle being such a poor design. A portion of the shuttle development money reportedly went under the table into the B-1 bomber program; how much we will never know. Swing wings are not easy to build which is why you do not see it anymore; cuts into profits.

The easy money of cold war toys has since defeated any move by industry to take up the cause of space exploration. No easy money in spaceships. People who want something for nothing rarely end up with anything worth anything. Trying to find cheap ways around furnishing explorers with the physcial conditions human beings evolved in is going to fail. On the other hand if we start with a baseline of one gravity and Earth level radiation we are bound to succeed.

The engineering solutions to this baseline requirement are as I have already detailed; a tether for gravity and a massive moonwater shield with bomb propulsion. That is EXACTLY how to do it and I do not see any one else offering anything else that will work- just waffling and spewing about R&D.
We have been doing R&D for over half a century. It is a reason to go that is supposedly lacking.

When that crater in Mexico was discovered in 1980 the cold war was reaching it’s crescendo and the massive extinction it caused was overshadowed by the threat of nuclear weapons. Impact defense is still the only path to all that DOD money for a Moon base.

http://www.sciencedaily.com/releases/2012/12/121231180632.htm

Excerpt: “Galactic cosmic radiation poses a significant threat to future astronauts,” said M. Kerry O’Banion, M.D., Ph.D., a professor in the University of Rochester Medical Center (URMC) Department of Neurobiology and Anatomy and the senior author of the study. “The possibility that radiation exposure in space may give rise to health problems such as cancer has long been recognized. However, this study shows for the first time that exposure to radiation levels equivalent to a mission to Mars could produce cognitive problems and speed up changes in the brain that are associated with Alzheimer’s disease.”

It appears when Eugene Parker wrote “Shielding Space Travelers” in 2006 he was right- and all the private space sycophants claiming radiation mitigation is trivial are wrong.

Only a massive water shield a minimum of 14 feet thick and massing 400 tons for a small capsule can shield human beings in deep space on long duration missions. And since a small capsule will not have sufficient space to keep a crew psychologically healthy on a multi-year journey it is likely such a shield will massive over a thousand tons.

This mass may seem to make Human Space Flight Beyond Earth and Lunar Orbit (HSF-BELO) impractical but in fact it is not an obstacle but an enabler. Nuclear Pulse Propulsion using bombs to push a spaceship to the outer solar sytem becomes more efficient the larger the ship and this amount of water is useful in a closed loop life support system.

Lighting off bombs in the Earth’s magnetosphere is not acceptable and this points to the Moon as the obvious place to launch nuclear missions and also to acquire the water for radiation shielding. The Space Launch System (SLS) is the human-rated Heavy Lift Vehicle (HLV) with a powerful escape system that can safely transport the required fissionables to the Moon.

2013 may be the year of the comet and the year of the spaceship if the two goals of protecting the planet from impacts and establishing off world colonies are finally recognized as vital to the survival of humankind.

Gravity Modification – New Tools

Posted in business, cosmology, defense, education, engineering, general relativity, particle physics, philosophy, physics, policy, spaceTagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment on Gravity Modification – New Tools

To understand why gravity modification is not yet a reality, let’s analyze other fundamental discoveries/inventions that changed our civilization or at least the substantially changed the process of discovery. There are several that come to mind, the atomic bomb, heavier than air manned flight, the light bulb, personal computers, and protein folding. There are many other examples but these are sufficient to illustrate what it takes. Before we start, we have to understand four important and related concepts.

(1) Clusters or business clusters, first proposed by Harvard prof. Michael Porter, “a business cluster is a geographic concentration of interconnected businesses, suppliers, and associated institutions in a particular field. Clusters are considered to increase the productivity with which companies can compete, nationally and globally”. Toyota City which predates Porter’s proposal, comes to mind. China’s 12 new cities come to mind, and yes there are pro and cons.

(2) Hot housing, a place offering ideal conditions for the growth of an idea, activity, etc. (3) Crowdsourcing, is a process that involves outsourcing tasks to a distributed group of people. This process can occur both online and offline. Crowdsourcing is different from an ordinary outsourcing since it is a task or problem that is outsourced to an undefined public rather than a specific body. (4) Groundswell, a strong public feeling or opinion that is detectable even though not openly expressed.

I first read about the fascinating story of the making of the atom bomb from Stephane Groueff’s The Manhattan Project-the Making of the Atomic Bomb, in the 1970s. We get a clear idea why this worked. Under the direction of Major General Leslie Groves, and J. Robert Oppenheimer the US, UK & Canada hot housed scientist, engineers, and staff to invent and produce the atomic bomb physics, engineering and manufacturing capabilities. Today we term this key driver of success ‘hot housing’, the bringing together a group of experts to identify avenues for further research, to brainstorm potential solutions, and to test, falsify and validate research paths, focused on a specific desired outcome. The threat of losing out to the Axis powers helped increase this hot housing effect. This is much like what the Aspen Center for Physics is doing (video here).

In the case of the invention of the light bulb, the airplane, and the personal computer, there was a groundswell of public opinion that these inventions could be possible. This led potential inventors with the necessary basic skills to attempt to solve these problems. In the case of the incandescent light bulb, this process took about 70 years from Humphrey Davy in 1809, to Thomas A. Edison and Joseph Wilson Swan in 1879. The groundswell started with Humphrey and had included many by the time of Edison in 1879.

In the case of the airplane the Wright brothers reviewed other researchers’ findings (the groundswell had begun much earlier), and then invented several new tools & skills, flight control, model testing techniques, test pilot skills, light weight motors and new propeller designs.

The invention of the personal computer had the same groundswell effect (see Homebrew Computer Club & PBS TV transcripts). Ed Roberts, Gordon French, Fred Moore, Bob Harsh, George Morrow, Adam Osborne, Lee Felsenstein, Steve Jobs, Steve Wozniak, John Draper, Jerry Lawson, Ron Jones and Bill Gates all knew each other before many of them became wealthy and famous. Bill Gates wrote the first personal computer language, while the others invented various versions of the microcomputer, later to be known as the personal computer, and peripherals required. They invented the products and the tools necessary for the PC industry to take off.

With protein folding, Seth Cooper, game designer, developed Fold It, the tool that would make the investigation into protein folding accessible to an undefined public. Today we describe this ‘crowdsourcing’. Notice that here it wasn’t a specialized set of team that was hot housed, but the reverse, the general public, were given the tools to make crowdsourcing a viable means to solving a problem.

Thus four key elements are required to foster innovation, basic skills, groundswell, hothouse or crowdsourcing, and new tools.

So why hasn’t this happened with gravity modification? Some form of the groundswell is there. In his book The Hunt for Zero Point, Nick Cook (an editor of the esteemed Jane’s Defense Weekly) describes a history that goes back to World War II, and Nazi Germany. It is fund reading but Kurt Kleiner of Salon provides a sober review of The Hunt for Zero Point.

There are three primary reasons for this not having happened with gravity modification. First, over the last 50 years or so, there have only been about 50 to 100 people (outside of black projects) who have investigated this in a scientific manner. That is, the groundswell of researchers with the necessary basic skills has not reached a critical mass to take off. For example, protein folding needed at least 40,000 participants, today Fold It has 280,000 registered participants.

Second, pseudoscience has crept into the field previously known as ‘antigravity’. In respectable scientific circles the term used is gravity modification. Pseudoscience, has clouded the field, confused the public’s perception and chased away the talent – the 3 C’s of pseudoscience. Take for example, plutonium bomb propulsion (written by a non-scientist/non-engineer), basic investigation shows that this is neither feasible nor legal, but it still keeps being written up as a ‘real’ proposition. The correct term for plutonium bomb propulsion is pseudoscience.

Third reason. Per the definition of gravity modification, we cannot use existing theories to propose new tools because all our current status quo theories require mass. Therefore, short of my 12-year study, no new tools are forth coming.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

The Kline Directive: Theoretical-Empirical Relationship (Part 4)

Posted in business, cosmology, defense, economics, education, engineering, nuclear weapons, particle physics, philosophy, physics, policy, scientific freedom, spaceTagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | 11 Comments on The Kline Directive: Theoretical-Empirical Relationship (Part 4)

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationship, & Technological Feasibility.

In this post I have updated the Interstellar Challenge Matrix (ICM) to guide us through the issues so that we can arrive at interstellar travel sooner, rather than later:

Interstellar Challenge Matrix (Partial Matrix)

Propulsion Mechanism Relatively Safe? Theoretical-Empirical Relationship?
Conventional Fuel Rockets: Yes, but susceptible to human error. Known. Theoretical foundations are based on Engineering Feasible Theories, and have been evolving since Robert Goddard invented the first liquid-fueled rocket in 1926.
Antimatter Propulsion: No. Extensive gamma ray production (Carl Sagan). Issue is how does one protect the Earth? Capable of an End of Humanity (EOH) event. Dependent on Millennium Theories. John Eades states in no uncertain terms that antimatter is impossible to handle and create.
Atomic Bomb Pulse Detonation: No, because (Project Orion) one needs to be able to manage between 300,000 and 30,000,000 atomic bombs per trip. Known and based on Engineering Feasible Theories.
Time Travel: Do Not Know. Depends on how safely exotic matter can be contained. Dependent on a Millennium Theory. Exotic matter hypotheses are untested. No experimental evidence to show that Nature allows for a breakdown in causality.
String / Quantum Foam Based Propulsion: Do Not Know. Depends on how safely exotic matter can be contained. Dependent on a Millennium Theory. String theories have not been experimentally verified. Exotic matter hypotheses are untested. Existence of Quantum Foam now suspect (Robert Nemiroff).
Small Black Hole Propulsion: No. Capable of an End Of Humanity (EOH) event Don’t know if small black holes really do exist in Nature. Their theoretical basis should be considered a Millennium Theory.

It is quite obvious that the major impediments to interstellar travel are the Millennium Theories. Let us review. Richard Feynman (Nobel Prize 1965) & Sheldon Lee Glashow (Nobel Prize 1979) have criticized string theory for not providing novel experimental predictions at accessible energy scales, but other theoretical physicists (Stephen Hawking, Edward Witten, Juan Maldacena and Leonard Susskind) believe that string theory is a step towards the correct fundamental description of nature. The Wikipedia article String Theory gives a good overview, and notes other critics and criticisms of string theories. In What is String Theory? Alberto Güijosa explains why string theories have come to dominate theoretical physics. It is about forces, and especially about unifying gravity with the other three forces.

Note, strings expand when their energy increases but the experimental evidence aka Lorentz-Fitzgerald transformations tell us that everything contracts with velocity i.e. as energy is increased.

In my opinion, the heady rush to a theory of everything is misguided, because there is at least one question that physics has not answered that is more fundamental than strings and particles. What is probability and how is it implemented in Nature?

Probabilities are more fundamental than particles as particles exhibit non-linear spatial probabilistic behavior. So how can one build a theory of everything on a complex structure (particles), if it cannot explain something substantially more fundamental (probabilities) than this complex structure? The logic defies me.

We can ask more fundamental questions. Is this probability really a Gaussian function? Experimental data suggests otherwise, a Var-Gamma distribution. Why is the force experienced by an electron moving in a magnetic field, orthogonal to both the electron velocity and the magnetic field? Contemporary electromagnetism just says it is vector cross product, i.e. it is just that way. The cross product is a variation of saying it has to be a Left Hand Rule or a Right Hand Rule. But why?

Is mass really the source of a gravitational field? Could it not be due to quark interaction? Can we device experiments that can distinguish between the two? Why do photons exhibit both wave and particle behavior? What is momentum, and why is it conserved? Why is mass and energy equivalent?

Can theoretical physicists construct theories without using the laws of conservation of mass-energy and momentum? That would be a real test for a theory of everything!

In my research into gravity modification I found that the massless formula for gravitational acceleration, g=τc2, works for gravity, electromagnetism and mechanical forces. Yes, a unification of gravity and electromagnetism. And this formula has been tested and verified with experimental data. Further that a force field is a Non Inertia (Ni) field, and is present where ever there is a spatial gradient in time dilations or velocities. This is very different from the Standard Model which requires that forces are transmitted by the exchange of virtual particles.

So if there is an alternative model that has united gravity and electromagnetism, what does that say for both string theories and the Standard Model? I raise these questions because they are opportunities to kick start research in a different direction. I answered two of these questions in my book. In the spirit of the Kline Directive can we use these questions to explore what others have not, to seek what others will not, to change what others dare not?

That is why I’m confident that we will have real working gravity modification technologies by 2020.

In concluding this section we need to figure out funding rules to ensure that Engineering Feasible and 100-Year Theories get first priority. That is the only way we are going to be able to refocus our physics community to achieve interstellar travel sooner rather than later.

Previous post in the Kline Directive series.

Next post in the Kline Directive series.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

http://phys.org/news/2012-08-impact-crater-arctic.html

They found yet another reason to build nuclear interceptors to deflect asteroids and comet impact threats.

Sooner or later something is going to hit us. It could be like Tunguska in 1908 and destroy a city instead of a forest in Siberia- or it could be like what hit the Yucatan 65 million years ago.

Except just a little bigger and nothing larger than bacteria will survive. There is nothing written anywhere that says it will not happen tomorrow.

The wailing and gnashing of teeth over spending money on space never seems to cross over to DOD programs where obscene amounts of tax dollars are spent on cold war toys used to fight mountain tribesmen with Kalashnikovs.

For example:
http://www.bloomberg.com/news/2012-02-13/navy-discloses-811-million-overrun-on-gerald-ford-carrier.html

The completed initial aircraft carrier, the first of three in the $40.2 billion program, is projected to cost at least $11.5 billion.

This essay was posted previously last year and removed and has appeared in abridged form in the European Space Safety online Magazine and can also be found on Yahoo voices.

Several dates are cited as marking the beginning of the space age. Sputnik, October 4th, 1957, Yuri’s day April 12th, 1961, and the first successful V-2 launch by the Nazis on October 3rd, 1942, to name a few. Some prefer December 21st, 1968, when human beings first escaped the Earth’s gravitational field on Apollo 8. When studying the events that allowed man to leave Earth, future historians may agree on a date not generally associated with space flight. July 16th, 1945 was Trinity, the first nuclear weapon test. Stanislaw Ulam, a 36-year-old Polish mathematician who helped build “the gadget”, visited ground zero after the test. Ulam later conceived the idea of propelling a spaceship with atomic bombs. Near the end of his life the eccentric genius stated the idea was his greatest work.

When considering nuclear propulsion, it must be understood that space is not an ocean, though often characterized as one. The distances and conditions are not comparable. While chemical energy has allowed humankind to travel across and above the surface of Earth, the energy required to travel in space is of a different order. Water, in the form of steam, was the agent of change that brought about the industrial revolution. Fossil fuel, burned and transformed by steam into mechanical work, would radically change the world in the span of a century. What is difficult for moderns to understand is not only how limited human capabilities were before steam, but how limited they are in the present in terms of space travel. The psychological limits of human beings limit space journeys to a few years. Chemical propulsion is not capable of taking human beings to the outer solar system and back within those crew limits. The solution is a reaction one million times more powerful. Nuclear energy is to the space age as steam was to the industrial age.

Space is not an ocean and this was the correct lesson drawn by Stanislaw Ulam after that suddenly bright morning in 1945. While metal can barely contain and harness chemical energy, Ulam thought outside that box and accepted nuclear energy could never be contained efficiently by any material. However, nuclear energy could be harnessed to push a spaceship in separate events to the fantastic velocities required for interplanetary travel without any containment problems at all- by using bombs. An uncontained burst of nuclear generated plasma could be withstood by a surface momentarily before the physical matter had time to melt.

Sixty years after Ulam’s stroke of genius, atomic bomb propulsion still has no competition as the only available propulsion system for practical interplanetary travel. This fact is almost completely unknown to the public. The term “ISP”, expressed in seconds, is used in measuring the efficiency of a rocket engine and chemical rockets have low ISP numbers but high thrust. The most efficient rocket engines, such as the space shuttle main engines, with a listed ISP of 453 seconds are also among the most powerful. Atomic bomb propulsion, thanks to the billions of dollars poured into star wars weapons research, would have an ISP exceeding 100,000 seconds. While other propulsion systems that use electricity have similar or higher numbers, the amount of thrust is trivial and requires months or years of continuous operation to develop any significant velocity. Considering space travel as not only a speed and distance problem, but also a time and distance problem, low thrust lengthens any missions to the outer solar system beyond crew limits. The thrust imparted by atomic bombs can in a short period easily accelerate thousands of tons to the comparatively extreme speeds necessary and then coast. Unlike an electric propulsion failure, a few dud bombs need not doom a mission or crew.

Though an incredible use of awesome power, the obstacles to employing bomb propulsion are not technical as some of the best engineers and physicists on the planet evaluated and validated the concept. A cadre of celebrity scientists also endorsed atomic bomb propulsion, including Werner Von Braun, who was present as a Nazi SS officer at the first successful V-2 launch, and as an American citizen at the launch of Apollo 8. Arthur C. Clarke and Carl Sagan were also supporters. The first serious work on bomb propulsion was done by physicist Freeman Dyson and weapon designer Ted Taylor on the top secret project Orion. Dyson’s son, in his book Project Orion, refers to the classified star wars project Casaba Howitzer. This device focused most of the energy of a nuclear explosion in one direction. Ted Taylor’s specialty was small warheads and he designed the Orion bombs, aka “pulse units.” The “unclassified” state of the art in nuclear weapons can direct 80 percent of bomb energy into a slab of propellant, converting this mass into a jet of superheated plasma. A pusher plate would absorb the blast without melting for the fraction of a second it lasts and accelerate the spaceship in steps with each bomb. Perhaps the closest experience to riding in an atomic bomb propelled spaceship would be repeated aircraft carrier catapult launches. Instead of the ocean- space, instead of supersonic fighters- a thousand ton spaceship.

Project Orion was canceled due to nuclear weapon treaties requiring international consent for using any such devices in space. A parallel to the failure of atomic bomb propulsion may be found in an examination of the industrial age. In The Most Powerful Idea in the World: A Story of Steam, Industry, and Invention, author William Rosen theorizes English patent law was the key enabler of the industrial age by allowing inventors to retain and profit from their intellectual property. The atomic bomb originated with a letter to President Roosevelt in 1939 from pacifist Albert Einstein- who was afraid the Nazi’s might build one first. With the human race living at the bottom of a deep, damp, and easily contaminated gravity well, atom bombs have never been applied successfully to a peaceful purpose. Stan Ulam, who lost most of his family in the holocaust, held the patent on atomic bomb propulsion. In the space age, nuclear weapon treaties and anti-nuclear activism have had the opposite effect of patent law and prevented atomic bomb propulsion from opening up the solar system to human exploration and colonization. Ironically, the nuclear industry is not safe on Earth- but deep space seems designed for it. There are no contamination or waste hazards, no long-term storage problems.

The problems with space travel are more than just the political barriers to detonating nuclear devices. The space industry is ipso facto a nuclear industry. Not only is nuclear energy the only practical source of propulsion in deep space, nuclear radiation generated by supernova and other celestial sources permeate space outside the protection of the earth’s atmosphere. All astronauts are radiation workers. Most, but sadly not all, space radiation is relatively easy to shield against. Many will argue using atomic bombs for propulsion is unnecessary. The presence of a small percentage of highly damaging and deeply penetrating particles- the heavy nuclei component of galactic cosmic rays makes a super powerful propulsion system mandatory. The tremendous power of atomic bomb propulsion is certainly able to propel the heavily shielded capsules required to protect space travelers. The great mass of shielding makes chemical engines, inefficient nuclear thermal rockets, the low thrust forms of electrical propulsion, and solar sails essentially worthless for human deep space flight. Which is why atomic bomb propulsion is left as the only “off the shelf” viable means of propulsion. For the foreseeable future, high thrust and high ISP to propel heavy shielding to the required velocities is only possible using bombs. The most useful and available form of radiation shielding is water. While space may not be an ocean, it appears human beings will have to take some of the ocean with them to survive.

The water comes before the bombs in human space flight because of the humans. The radiation hazards of long duration human space flight beyond earth orbit are only recently being addressed after decades of space station experience. The reason for this neglect is low earth orbit space stations are shielded from much of the radiation found outside the Earth’s Van Allen belts and magnetic field. An appreciation of the heavy nuclei component of galactic cosmic radiation, as well as solar events, will put multi-year human missions beyond earth orbit on hold indefinitely until a practical shield is available. While vested interests continue to promote inferior or non-existent technology, dismissing the radiation hazards and making promises they cannot keep, radiation scientists studying deep space conditions are skeptical- to say the least.

In the March 2006 issue of Scientific American magazine, Dr. Eugene Parker explained in simple terms survivable deep space travel. In “Shielding Space Travelers”, Parker states, “cosmic rays pose irreducible risks.” The premise of this statement is revealed when the only guaranteed solution to reducing the risk- a shield massing hundreds of tons- is deemed impractical. Active magnetic shields and other schemes are likewise of no use because while they may stop most radiation, the only effective barrier to heavy nuclei is mass and distance. The impracticality of a massive shield is due to first the expense of lifting hundreds of tons of shielding into space from Earth, and secondly propelling this mass around the solar system. Propelling this mass is not a problem if using atomic bombs, however, another problem arises. Even if the bombs could be politically managed, there is still the need to escape Earth’s gravitational field with all that shielding. Bomb propulsion is ideal for deep space but cannot be used in Earth orbit due to the Earth’s magnetic field trapping radioactive fallout that eventually enters the atmosphere. Not only lifting the shielding into orbit but chemically boosting it to a higher escape velocity away from the Earth is thus doubly problematic. Earth is a deep gravity well to climb out of.

The situation changed in March 2010 when NASA reported Mini-SAR radar aboard the Chandrayaan-1 lunar space probe had detected what appeared to be ice deposits at the lunar North Pole. An estimated 600 million tons of ice in sheets a couple meters thick. Moon water would allow a spaceship in lunar orbit to fill an outer hull with the 500+ tons of water required to effectively shield a capsule from heavy nuclei. This would enable an empty spaceship to “travel light” to the Moon and then boost out of lunar orbit using atomic bomb propulsion with a full radiation shield. Parker’s guaranteed but impractical solution had suddenly become practical. Fourteen feet of water equals the protection of the Earth’s air column at an altitude of 18,000 feet above sea level. This would protect astronauts not only from all forms of cosmic radiation but the most intense solar storms and the radiation belts found near the moons of Jupiter. With water and bombs, epic missions of exploration to the asteroid belt and outer planets are entirely possible. The main obstacles are again political, not technical. Bombs work, water works, and the Moon is in range of chemically propelled spacecraft launched from Earth.

There are other challenges to long duration beyond earth orbit human space flight but the solutions have been known for many decades. Zero gravity debilitation causes astronauts to weaken and permanently lose bone and bone marrow mass. The most practical solution, theorized since the early 1930′s, was investigated in 1966 during the Gemini 11 mission. A 100-foot tether experiment with the capsule attached to an Agena booster was successful in generating a small amount of artificial gravity by spinning the two vehicles. Equal masses on the ends of a tether can efficiently generate centrifugal force equal to one gravity. The concept is to “split the ship” when not maneuvering under power so the 500+ tons of shielded capsule is on one end and the rest of the craft of equal mass is reeled out on the other end of a thousand foot or more tether. Looking out through 14 feet of water, the crew of such a spaceship would view a slowly rotating star field. Long duration missions may last close to half a decade and the only option for providing air and water is to use a miniature version of Earth’s ecosystem. Equipment to enable a closed cycle life support system providing years of air and water is now available in the form of plasma reformers and facilitated by tons of water in which to grow algae or genetically modified organisms. With Earth radiation, Earth gravity, and air and water endlessly purified on board, crews can push their psychological limits as many years and as far out into the solar system as the speed of their atomic spaceships allow.

At the time of this writing, in early 2011, the outlook for human space flight is not encouraging. There are zero prospects for funding a long duration beyond earth orbit mission. Using atomic bombs to push minimum spaceship masses of over one thousand tons around the solar system for years at a time would cost as much as several major U.S. department of defense projects combined. Space flight is inherently expensive; there is no cheap. However, there is a completely valid military mission for atomic bomb propelled spaceships. Planetary protection became an issue in 1980 after the Chicxulub impact crater in Mexico was assigned blame for the mass extinction of the dinosaurs. Though overshadowed by the cold war, the impact threat remains. Comet and asteroid impacts are also the stuff of Hollywood movies and this is unfortunate in that a grave threat to the survival of life on earth is viewed as fictional entertainment. The impact threat is not science fiction; it is quite real, as the frequent near misses and geologic evidence of repeated extinction events show. Optimized directional bombs used in bomb propulsion could also be employed to deflect comets and asteroids long before they approach Earth.

While the consequences of ignoring the threat of an inevitable tsunami, earthquake, or hurricane are bad, the consequences of ignoring the inevitable comet or asteroid impact are apocalyptic. It is not only random impacts that could strike at any time the human race need guard against. In April of 2010 renowned physicist Stephen Hawking warned of alien civilizations posing a possible threat to humanity. Several large comets purposely crashed into a planet to wipe out the majority of indigenous life and prepare for the introduction of invasive alien species may be a common occurrence in the galaxy. Before readers scoff, they might consider towers brought down by jetliners, the discovery of millions of planets, and other recent unlikely events. It is within our power to defend Earth from the very real threat of an impact, and at this time self-defense is the only valid reason to go into space instead of spending the resources on Earth improving the human condition. Protecting our species from extinction is the penultimate moral high ground above all other calls on public funds. The vast treasure expended by nations threatening each other is not protecting the human race at all. Earth is defenseless. President Ronald Reagan in his 1983 Star Wars speech said, “I call upon the scientific community who gave us nuclear weapons to turn their great talents to the cause of mankind and world peace.” President Barack Obama has expressed a desire to reduce the world nuclear arsenal and converting these weapons to propulsion devices would do so. A powerful force of nuclear powered, propelled, and armed spaceships cannot guarantee Earth will not suffer a catastrophe. The best insurance for our species is to establish, in concert with a spaceship fleet, several independent self-supporting off world colonies in the outer solar system. The first such colony would mark the beginning of a new age.

Time line

1939 (August) Einstein sends letter recommending atomic bomb.

1939 (September) Germany invades Poland, World War 2 begins.

1942 First successful V-2 rocket launch by the Nazis.

1945 Trinity, the first atomic bomb is detonated.

1957 Sputnik achieves orbit using a rocket designed to carry an atomic bomb.

1961 Yuri Gagarin orbits Earth.

1966 Gemini 11 mission demonstrates artificial gravity.

1967 Outer Space Treaty restricts nuclear weapons in space.

1968 Apollo 8 crew escapes Earth’s gravitational field.

1980 Chicxulub impact crater revealed as dinosaur killer.

1983 Ronald Reagan gives Star Wars speech.

2006 Eugene Parker explains survivable deep space travel.

2010 (March) Millions of tons of ice are discovered on the Moon.

2010 (April) Stephen Hawking warns of alien civilization threat.

References

George Dyson, 2002, Project Orion: The True story of the Atomic Spaceship, Henry Holt and Company, LLC

Eugene Parker, March 2006, Shielding Space Travelers, Scientific American Magazine

William Rosen, 2010, The Most Powerful Idea in the World: A Story of Steam, Industry, and Invention, Random House