Toggle light / dark theme

No, it’s not forbidden to innovate, quite the opposite, but it’s always risky to do something different from what people are used to. Risk is the middle name of the bold, the builders of the future. Those who constantly face resistance from skeptics. Those who fail eight times and get up nine.

(Credit: Adobe Stock)

Fernando Pessoa’s “First you find it strange. Then you can’t get enough of it.” contained intolerable toxicity levels for Salazar’s Estado Novo (Portugal). When the level of difference increases, censorship follows. You can’t censor censorship (or can you?) when, deep down, it’s a matter of fear of difference. Yes, it’s fear! Fear of accepting/facing the unknown. Fear of change.

What do I mean by this? Well, I may seem weird or strange with the ideas and actions I take in life, but within my weirdness, there is a kind of “Eye of Agamotto” (sometimes being a curse for me)… What I see is authentic and vivid. Sooner or later, that future I glimpse passes into this reality.

When the difference enters, it becomes normal and accepted by society to make room for more innovation, change, and difference.

Cyberspace 2021.

The term “cyberspace” first appeared in fiction in the 1980s, incorporating the Internet invented earlier (1969). It’s as if time doesn’t matter, and cyberspace always exists. There might not be a name for it yet, but it sure did, like certain Universal Laws that we are discovering and coining, but that has always existed.

It is the ether of digital existence…!

In 1995, I was also called crazy — albeit nicely, by the way — when, from door to door, I announced the presence of something called the Internet. Entrepreneurs who esteemed me until they warmly welcomed me into their companies, perhaps because of my passion for explaining what was unknown to them, only to decline later what I proposed to them: placing companies in the network of networks.

I was affectionately dubbed crazy for a few more years until the part where “I stopped being crazy” to be another entrepreneur exploring something still strange called the Internet. We were about to reach the so-called “dot-com bubble.” The competition had arrived, and I clapped my hands; I no longer felt alone!

(Obviously, I wasn’t the only one to see the future forming in front of our eyes. I saw color on black and white screens.)

The heights of wisdom, the masters of the universe, began to emerge because they heard that the Internet was a business that made much money, and the gold rush became frantic and ridiculous. A few years later — some weren’t for years — there was a mushroom explosion.

After persuasion resulting from the obvious and not the explanations of insane people (me included), this new industry has matured and revolutionized the world. However, history tends to repeat itself, and several revolutions, large and small, have taken place since then. Some are so natural that change happens overt and viral. But more attention needs to be paid to some revolutionary changes that could jeopardize human existence as we know it.

I’m referring to Artificial Intelligence (AI) which is now everywhere, albeit invisible and tenuous. The exponential acceleration of technology is taking us there to the point of no return.

When Moore’s Law itself becomes outdated, it only means that technological acceleration has gone into “warp” speed. At the risk of us human beings becoming outdated, we must change our reluctance and skepticism.

There is no time for skepticism. Adaptation to what is coming, or what is already here among us, like extraterrestrials, is crucial for the evolution and survival of the human species. I believe we are at another great peak of technological development.

I always pursued the future, not to live outside the reality of the present but to help build it. After all these years of dealing with the “Eye of Agamotto,” I feel the duty and obligation to contribute to a better future and not sit idly by watching what I fear will happen.

Angels and demons lurk between the zeros and ones!

So far, with current conventional computers, including supercomputers, the acceleration is already vertiginous. With quantum computers, the thing becomes much more serious, and if we aren’t up to merging our true knowledge, our human essence, with machines, danger lurks.

Quantum computing powers AI, maximizing it. An exponentiated AI quickly arrives at the AGI. That is the Artificial General Intelligence or Superintelligence that equals or surpasses the average human intelligence. That’s the intelligence of a machine that can successfully perform any intellectual task of any human being.

When we no longer have the artificiality of “our own” intelligence and Superintelligence has emerged, it’s good that the bond between human and machine has already had a real “handshake” to understand each other, just like two “modems,” understood each other in the BBS (Bulletin Board System) time.

We human beings are still — and I believe we always will be — the central computer, albeit with inferior computational resources (for now), and replaced by mighty machines that accelerate our evolution.

There is no way out. It’s inevitable. It’s evolution. So, a challenge and not a problem. Perhaps the greatest human challenge. So far, it’s been warming up. Henceforth, everything done will have to be free of human toxicity so that New AI is, in fact, our best version, the cream of the very best in human beings; its essence in the form of a whole!

A digital transformation is a transition to a different world. The power of adaptation to this different world defines our existence (survival, like Darwin).

As you’ve already noticed, the title of this article (Innovation is a risk!) has a double meaning. Let me complement it with:

Life is a risk!

The blockchain revolution, online gaming and virtual reality are powerful new technologies that promise to change our online experience. After summarizing advances in these hot technologies, we use the collective intelligence of our TechCast Experts to forecast the coming Internet that is likely to emerge from their application.

Here’s what learned:

Security May Arrive About 2027 We found a sharp division of opinion, with roughly half of our experts thinking there is little or no chance that the Internet would become secure — and the other half thinks there is about a 60% probability that blockchain and quantum cryptography will solve the problem at about 2027. After noting the success of Gilder’s previous forecasts, we tend to accept those who agree with Gilder.

Decentralization Likely About 2028–2030 We find some consensus around a 60% Probability and Most Likely Year About 2028–2030. The critical technologies are thought to focus on blockchain, but quantum, AI, biometrics and the Internet of things (IoT) also thought to offer localizing capabilities.

Immersion Highly Likely About 2031–2032 The experts show good agreement on a 70% probability that immersive capabilities will arrive about 2031–2032. They also suggest a variety of technologies will make this possible: blockchain, VR and AR, gaming, AI, IoT and a useful brain-computer interface.

EMERGING INTERNET TECHNOLOGIES

The Blockchain Revolution
George Gilder’s latest book, Life After Google, is a landmark forecast on what he calls the “cryptocosm.” Like his earlier book, Microcosm, which forecast the Information Technology Revolution caused by microchips, followed by Telecosm, which forecast today’s explosion of wireless technology, the cryptocosm extends major advances in blockchain technology into all spheres of the Internet.

Gilder thinks the cryptocosm will produce a web that overthrows the top-down monopolies of Google, Facebook, Amazon and the other tech giants that have created a web that is insecure, clumsy and destined to fail. Using stunning examples of brilliant technological advances by pioneering entrepreneurs, Life After Google promises an Internet that is secure, private, decentralized and controlled by users rather than the tech giants.

In Gilder’s terms:

“Google is hierarchical. Life after Google will be heterarchical. Google is top-down. Life after Google will be bottom-up. Google rules by the insecurity of the lower layers in the stack. A porous stack enables the money and power to be sucked up to the top. In Life after Google, a secure ground state in the individual, registered and timestamped in a digital ledger, will prevent this suction of hierarchical power.”

A telling sign is that China is leading the blockchain revolution. In October of 2019, Premier Xi Jinping called on the nation to “seize the opportunity of blockchain technology as a new security architecture for the Internet.” In April 25, 2020, China launched its national blockchain platform, the Blockchain Service Network (BSN). In time, Xi plans to replace their national currency and other currencies around the globe with new digital systems.

Advanced Gaming

Related breakthroughs are underway as gaming technology becomes vividly immersive, interactive, intelligent and 3 dimensional — creating the famed Metaverse pioneered a

few years ago by Second Life. Nintendo’s Animal Crossing, Facebook’s Horizon, Epic Games’ Fortnite, Minecraft, and other contenders are blazing a path that seems likely to move virtual reality from expensive headsets into everyday life on the web. There were 2.6 billion people playing games globally in 2017, producing revenue of $100 billion.

Jacob Novak, CEO Genvid Technologies, expects the web to become “a mix of game engines, interactivity and video… game engines will be the primary way people will have interfaces with the Internet.”

Travis Scott, a celebrated gamer in Fortnite, thinks “As VR and AR evolve, we’ll be able to build truly immersive virtual worlds.”

Virtual Reality

After years of sluggish growth in VR, we are seeing the convergence of the Internet, high-resolution graphical interfaces, greater computing power, motion sensors, 3D modeling, digital games, and social networking. We also see the rise of augmented reality (AR) – digital information laid over the real-world environment. Experts think these diverse virtual environments will converge into a virtual metaverse. TechCast expects VR to reach mainstream adoption about 2023 + 3/- 1 years and the market will reach about US$550 billion when it hits saturation level about 2030.

VR is also finding its way into business applications. Here’s how Kevin Cardona, head of innovation at BNP Paribas, said it benefits their company: “We are truly convinced that we need to invest in the technology because it will help us to be a company active in 50 countries around the world with clients all over the world.”



Here are other prominent forecasts:

Facebook’s Mark Zuckerberg thinks “Immersive 3D is the obvious next thing after video.”

Heather Bellini, an executive at Goldman Sachs, thinks: “VR and AR will be as transformative as the smartphone.”

Jim Blascovich and Jeremy Bailenson, authors of Infinite Reality, expect a future where “your avatar fills in for you at virtual meetings while you do something more important.”


COLLECTIVE INTELLIGENCE OF TECHCAST EXPERTS

After giving the TechCast experts this background information on leading technologies, we asked them to estimate the prospects for security, decentralization and immersion on the Internet. Results are summarized below.

Security

The most striking feature of our data shows dramatically different views on the prospects for improving security. One group of 8 responses averages less than a 20% probability this will happen, and another group of 9 responses averages more than an 80% probability. A similar bi-modal distribution shows 10 people with an average “most likely year” of about 2027, while another group of 8 averages much later than 2040. The good news is that both groups seem to agree that blockchain and quantum cryptography are the likely technologies to make this happen, with the help of AI.


With such starkly divided opinion, additional insight seems needed to reconcile this impasse. Both cannot be correct. Yes, George Gilder’s claim is hard to accept, but he has been proven correct on similar forecasts. That’s why The Economist called him “America’s foremost technology prophet.”

Here’s how Gilder sums up his forecast in Life After Google: “Some thousands of companies you’ve never heard of are investing billions in that effort [to fix the lack of security on the internet]. Collectively they will give birth to a new network whose most powerful architectural imperative will be security of transactions… So fundamental will security be to this new system that it’s very name will be derived from it. It will be the cryptocosm…”

Marc Andreessen, the billionaire who invented the first web browser, endorsed Gilder’s forecast for blockchain when he told The Washington Post: This is the big breakthrough. This is the thing we’ve been waiting for… [Gilder] should get the Nobel prize… Hundreds or thousands of applications and companies that could get built on top [of this]…”

Looking over this evidence, we are more impressed by Gilder and his supporters. Our best forecast is that blockchain and quantum cryptography, along with a dash of AI, are likely to introduce a secure form of Internet about 2027. It may also require tougher laws, and it may not be perfect as some glitches are always possible, of course. But TechCast thinks it is coming and long overdue. Serious doubts are normal, of course, but we think the doubts may be what Arthur C. Clarke attributed to “failures of imagination and will.”

Decentralization

The possibility of decentralizing the web into a bottom up system that is no longer dominated by the big tech giants seems more plausible to our respondents. There remains a wide distribution of estimates in the bar charts below, but not a bi-polar distribution. Although many think there is zero probability this will happen, other responses form a fairly normal distribution averaging about 60%. Timing is also less divided, suggesting that these changes are likely to arrive about 2028–2030. The responsible technologies are thought to focus on blockchain, but quantum, AI, biometrics and the Internet of things (IoT) also thought to offer localizing capabilities. I suspect George Gilder would largely agree with this forecast.

The need to decentralize control is gaining some traction. Dfinity is building what it calls the internet computer, a decentralized technology spread across a network of independent data centers that allows software to run anywhere on the internet, rather than in server farms that are increasingly controlled by large firms. It’s planning a public release later this year. However, a free-for-all internet could make it difficult to hold app makers accountable. It could also require a decentralized form of governance which could lead to infighting. It’s not the first to try to remake the internet, so can it succeed where others have failed? Read the full story.

Immersion

Unlike Security and Decentralization, our experts tend to agree on the feasibility of sensory immersion in the Internet. The bar charts show a distribution centered around 70% probability and a most likely year of 2031–2032 when immersion arrives. They also suggest a variety of technologies will make this possible: blockchain, VR and AR, gaming, AI, IoT and a useful brain-computer interface. Gilder would be proud of these results.


Despite pockets of doubt and uncertainty, we think this study tells a compelling story about evolution of the Internet. The continuing advance of computer power, possibly using quantum, nanotech and photonic technologies, is likely to make complex blockchain platforms feasible over the coming decade. Along with applications of quantum crypto and AI, a new generation of Web systems is likely to greatly improve security and move control from tech companies to individuals. Some confusion and security failures will remain, of course, but glitches will be accepted by a younger cohort of users. The development of richer Internet experiences using VR/AR/XR, biometrics, AI, the IoT and holograms is very likely to bloom into the Metaverse long anticipated. Obviously, many other trends will also play important roles in the new Internet, as noted in our experts’ comments.

The strategic implications should be formidable. The status and control of the large tech companies is likely to shift to users, and the Internet service providers (Verizon, Comcast, etc.) may face competition from satellite systems flooding the air with cheap and abundant access. Apple and Elon Musk are launching satellites even now and expect to envelop the Earth with high-capacity broadband in a year or two. In addition to fierce competition from these new sources, the entire supply chain of ICT equipment and services will be disrupted by an advanced generation of suppliers. Users should gain more sophisticated and immersive capabilities that are needed for the high-tech society ahead.



CONCLUSION

This is small study, but TechCast thinks it illustrates the power of using collective intelligence to provide authoritative strategic analyses of hot topics. This study outlines the new Internet architecture that promises to revolutionize life online. The normal doubts are there, of course, but this authoritative analysis strongly indicates that we should see a different Internet emerge during this decade that is secure, decentralized and immersive.

SpaceX launching again this week, if all goes as planned.

Starlink deployment in orbit.

SpaceX is at it again. Love it or hate it, Starlink is growing again. The company is getting ready to launch the next batch of 60 satellites into orbit in just a few days. The original launch was postponed until after the successful launch of the crew dragon Demo-2 mission for NASA.

Now that the astronauts successfully docked with the International Space Station, SpaceX turns its focus back on Starlink. This launch, originally planned to launch before the Crew Dragon Demo-2 mission, now looks promising for a launch this week.


The constellation consists of thousands of mass-produced small satellites in low Earth orbit adds up quickly. Each Falcon 9 launch gets packed full of sixty Starlink satellites. 60 satellites neatly fit in both size and mass limitations of the Falcon 9’s reusable configuration. Elon’s company delivered more than 420 satellites into orbit to date.
SpaceX now plans to loft the next batch into space Wednesday around 9:25 p.m. EDT. Visitors at the Cape Canaveral’s Complex 40 launch pad should be able to witness the launch so long as the weather holds out… and the weather is looking promising.


A one-hour launch window for the Starlink mission opening at 8:55 p.m. EDT (0055 GMT). If the launch gets scrubbed, SpaceX will cycle again for another attempt. The prior attempt at launch got scrubbed because of Tropical Storm Arthur and the associated high winds. As an additional complication for SpaceX launches, the rough seas in the recovery area where SpaceX’s drone ship waits made a landing of the Falcon 9 risky.

Worries from Astronomers: Starlink changes the night sky

November 11 at 9:56 a.m. EST, 14:56 UTC, SpaceX launched 60 Starlink satellites from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. Credit SpaceX.

This mission debuts a novel Starlink satellite not seen before. SpaceX, in response to concerned astronomers, includes additional features to reduce reflectivity. A new sunshade visor should help reduce the reflection of light and spoiling the night sky for astronomers.

The albedo of the spacecraft measured quite high coupled with the angle of light reflecting off the craft gave rise to visible strings of satellites streaking across the sky. The visor blocks sunlight from reaching the portions of the spacecraft, making them less visible from the ground. Additionally, SpaceX plans an adjusted flight trajectory and angle relative to the ground.

SpaceX plans Starlink service in the Northern U.S. and Canada starting in 2020. After initial market deployment in North America, Starlink rapidly expanding coverage to create truly near global coverage of the populated world by 2021.

SpaceX also focused on debris mitigation. The Starlink website claims the network is on the leading edge of on-orbit debris mitigation, meeting or exceeding all regulatory and industry standards. At the end of the satellite’s life, the onboard ion engine propulsion system slowly lowers the altitude over the course of a few months. Should the propulsion system becomes inoperable, satellites still burn up in Earth’s atmosphere within 1–5 years. (there are satellites still orbiting Earth launched in the 1960s.)

The Starlink constellation, Phase 1, first orbital shell: 72 orbits with 22 each, 1,584 satellites at 550 km altitude.

Krypton… isn’t that related to Superman?

No, Starlink’s power does not come from Superman’s homeworld. Rather it does draw energy from our sun with a single solar panel which powers the Krypton ion drive. Krypton is an inert noble gas with the symbol Kr and atomic number 36. There are other satellites and spacecraft using ion engines, but Starlink is the first-ever Krypton propelled spacecraft flown.

Starlink does have sort of a superpower. Starlink satellites have a built-in star tracker to allow the satellite to self orient. If that wasn’t cool enough, the satellites also can perform automatic collision avoidance thanks to some nifty new technology from the Department of Defense’s debris tracking system. This technology allows Starlink satellites to quickly, without the need for human intervention, avoid collisions reliably.

The US military also plans to test out Starlink for their own purposes. The United States Army signed a Cooperative Research and Development Agreement contract with SpaceX to test and assess Starlink’s broadband communication in military platforms. The three-year agreement with the Army will determine if the network is reliable for future military operations. The low latency of Starlink and global coverage makes Starlink an ideal option for Military communications. Even if one satellite is disabled, Starlink satellite number in the thousands once complete.

Tesla sporting NASA Worm Logo and Meatball in advance of human rocket launch.

According to a report from a CBS affiliate in Wichita Falls, Tex., Texas Governor Greg Abbott told a local television reporter he had the opportunity to talk to Elon Musk and he’s genuinely interested in Texas and genuinely frustrated with California.

Tesla stopped making cars at its Fremont plant on March 23. Elon Musk shared frequently his views that the state and local restrictions aimed at mitigating the spread of the coronavirus were actually not in the best interest of California, the people of California, and not Tesla either.

Why is Tesla Fremont important?


Looking back in history, the GM automotive assembly plant in South Fremont used to be the town’s largest employer. In the 1980s, the plant became a joint venture automotive assembly plant of Toyota and GM, and renamed NUMMI becoming one of the most effective small car factories for GM. In early 2010, NUMMI came to an end and closed. Enter TESLA to rescue Fremont. Tesla acquired part of the plant and in June 2010 by Elon Musk earmarked it as Tesla’s primary production plant. By 2017, Tesla was the largest employer in Fremont with roughly 10,000 employees.

Ten years after Tesla swooped in and brought 10,000 jobs to Fremont, Elon Musk is not so happy.

inflatable heat shield
China inflatable heat shield: Credit CCTV

New spacecraft experience setbacks all the time. SpaceX Starship prototype violently disassembled several times. Boeing launched the CST-100 but ended up in the wrong orbit. China isn’t a stranger to setbacks either.

China tested a prototype spacecraft on May 5th, 2020 in efforts to prove the technology was ready. It’s good it was a test and not an actual mission since the spacecraft did not perform as expected. The news agency Xinhua reported the spacecraft launched from Hainan China, operated abnormally during its return.

Heat Shields Need to work or expect a terrible day.

Spacecraft experience tremendous heat during the last minutes of their mission. The heat shield protects the spacecraft from that heat. NASA looked at lots of materials and tested many before using for heat shields.

NASA’s Space Shuttle used a thermal soak heat shield approach. The Shuttle tiles act as an insulating material. The design absorbs and radiates the heat away from the spacecraft structure. A second common approach is an ablative heat shield like those used for Mercury, Gemini, Apollo, and Orion spacecraft. These ablative heat shields commonly have a layer of plastic resin which experiences intense heating while entering the atmosphere. The heat shield wears away, carrying the heat away through convection.

If damage to the heat shield results in compromised performance, disaster can strike like the loss of the Space Shuttle Columbia and all crew aboard. With Columbia, during takeoff, the heat shield tile damage occurred. While returning to Earth, super-heated gasses snuck in through the damaged tiles and resulted in the accident.

Newer heat shield design strives to increase reliability and safety. NASA developed the Phenolic Impregnated Carbon Ablator (PICA) heat shield. SpaceX continued to develop and adopted the technology for a segmented 3.6-meter PICA-X shield used on its Dragon spacecraft. SpaceX shared that PICA-A’s usefulness potentially extends for hundreds of times for Earth orbit reentry with only minor degradation each time. This performance allowed NASA’s Stardust comet sample return mission to survive reentry from its deep-space mission.

PICAX Heat Shield
Inspecting the carbon-composite carrier structure for the first Dragon spacecraft heat shield, fresh from its mold. At nearly 4 m (13 ft.) in diameter, the structure supports the PICA-X tiles that protect the spacecraft during reentry. Photo Credit: SpaceX/NASA
Dynetics Human Lander system

One of the three companies NASA announced today will land the next NASA astronauts on the Moon. NASA awarded three firm-fixed-price, milestone-based contracts for the human landing system awards under the Next Space Technologies for Exploration Partnerships (NextSTEP-2. The total combined value for all awarded contracts is $967 million for the 10-month base period.

NASA downselected from the five companies in the running to only three.

The contenders for the Moon mission contract.

NASA released the Human Landing System (HLS) solicitation on October 25, 2019. Five companies submitted proposals by the required due date of November 5, 2019. Listed below in alphabetical order:

  • Blue Origin Federation, LLC (Blue Origin)
  • The Boeing Corporation (Boeing)
  • Dynetics, Inc. (Dynetics)
  • Space Exploration Technologies Corp. (SpaceX)
  • Vivace Corp. (Vivace)

Some more details about the offers.

You likely recognize the more high profile companies like Boeing, SpaceX, and Blue Origin. Vivace and Dynetics profile in the general media tends to be less pronounced.

Vivace, founded in 2006, provides engineering services, ground support equipment, engineering development hardware, and flight har…

Love it or hate it, Starlink might be the biggest space undertaking ever once completed. The combined mass of the Starlink satellite constellation exceeds any prior space endeavor. The SpaceX network provides global satellite Internet access will weigh in more than any other prior space program. The constellation consisting of thousands of mass-produced small satellites in low Earth orbit adds up quickly. Each Falcon 9 launch gets packed full of sixty Starlink satellites. The satellites neatly fit in both size and mass limitations of the Falcon 9.

November 11 at 9:56 a.m. EST, 14:56 UTC, SpaceX launched 60 Starlink satellites from Space Launch Complex 40 (SLC-40) at Cape Canaveral Air Force Station, Florida. Credit SpaceX

In 2018, The Federal Communications Commission granted SpaceX approval to launch up to 4,425 low-Earth-orbit satellites at several different altitudes between 1,110km to 1,325km. The following year, the FCC approved a license modification to cut the orbital altitude in half for 1,584 of those satellites. The lower altitude for the Starlink satellites reduces the latency of the Starlink. Yeah initial Starlink will be nearly the mass of the ISS.

NameKgQtyTotal Kg
Starlink2601 260
Starlink launch26060 15,600
Initial Starlink2601,584 411,840
ISS419,7251 419,725
Partial Starlink2601,614 419,725
Starlink full thrust2604,425 1,150,500
Big freak’n Starlink26012,000 3,120,000
Some Back of the napkin calculations about Starlink… give or take a little.

Upper row Associate American Corner librarian Donna Lyn G. Labangon, Space Apps global leader Dr. Paula S. Bontempi, former DICT Usec. Monchito B. Ibrahim, Animo Labs executive director Mr. Federico C. Gonzalez, DOST-PCIEERD deputy executive director Engr. Raul C. Sabularse, PLDT Enterprise Core Business Solutions vice president and head Joseph Ian G. Gendrano, lead organizer Michael Lance M. Domagas, and Animo Labs program manager Junnell E. Guia. Lower row Dominic Vincent D. Ligot, Frances Claire Tayco, Mark Toledo, and Jansen Dumaliang Lopez of Aedes project.

MANILA, Philippines — A dengue case forecasting system using space data made by Philippine developers won the 2019 National Aeronautics and Space Administration’s International Space Apps Challenge. Over 29,000 participating globally in 71 countries, this solution made it as one of the six winners in the best use of data, the solution that best makes space data accessible, or leverages it to a unique application.

Dengue fever is a viral, infectious tropical disease spread primarily by Aedes aegypti female mosquitoes. With 271,480 cases resulting in 1,107 deaths reported from January 1 to August 31, 2019 by the World Health Organization, Dominic Vincent D. Ligot, Mark Toledo, Frances Claire Tayco, and Jansen Dumaliang Lopez from CirroLytix developed a forecasting model of dengue cases using climate and digital data, and pinpointing possible hotspots from satellite data.

Sentinel-2 Copernicus and Landsat 8 satellite data used to reveal potential dengue hotspots.

Correlating information from Sentinel-2 Copernicus and Landsat 8 satellites, climate data from the Philippine Atmospheric, Geophysical and Astronomical Services Administration of the Department of Science and Technology (DOST-PAGASA) and trends from Google search engines, potential dengue hotspots will be shown in a web interface.

Using satellite spectral bands like green, red, and near-infrared (NIR), indices like Fraction of Absorbed Photosynthetically Active Radiation (FAPAR) and Normalized Difference Vegetation Index (NDVI) are calculated in identifying areas with green vegetation while Normalized Difference Water Index (NDWI) identifies areas with water. Combining these indices reveal potential areas of stagnant water capable of being breeding grounds for mosquitoes, extracted as coordinates through a free and open-source cross-platform desktop geographic information system QGIS.

https://www.youtube.com/watch?v=uzpI775XoY0

Check out the website here: http://aedesproject.org/

Winners visit the Philippine Earth Data Resource and Observation (PEDRO) Center at the DOST-Advanced Science and Technology Institute in Diliman, Quezon City with Dr. Joel Joseph S. Marciano, Jr.

“AEDES aims to improve public health response against dengue fever in the Philippines by pinpointing possible hotspots using Earth observations,” Dr. Argyro Kavvada of NASA Earth Science and Booz Allen Hamilton explained.

The DOST-Philippine Council for Industry, Energy and Emerging Technology Research and Development (DOST-PCIEERD) deputy executive director Engr. Raul C. Sabularse said that the winning solution “benefits the community especially those countries suffering from malaria and dengue, just like the Philippines. I think it has a global impact. This is the new science to know the potential areas where dengue might occur. It is a good app.”

“It is very relevant to the Philippines and other countries which usually having problems with dengue. The team was able to show that it’s not really difficult to have all the data you need and integrate all of them and make them accessible to everyone for them to be able to use it. It’s a working model,” according to Monchito B. Ibrahim, industry development committee chairman of the Analytics Association of the Philippines and former undersecretary of the Department of Information and Communications Technology.

Biological oceanographer Dr. Paula S. Bontempi, acting deputy director of the Earth Science Mission, NASA’s Science Mission Directorate and the current leader of the Space Apps global organizing team

The leader of the Space Apps global organizing team Dr. Paula S. Bontempi, acting deputy director of the Earth Science Mission, NASA’s Science Mission Directorate remembers the pitch of the winning team when she led the hackathon in Manila. “They were terrific. Well deserved!” she said.

“I am very happy we landed in the winning circle. This would be a big help particularly in addressing our health-related problems. One of the Sustainable Development Goals (SDGs) is on Good Health and Well Being and the problem they are trying to address is analysis related to dengue,“ said Science and Technology secretary Fortunato T. de la Peña. Rex Lor from the United Nations Development Programme (UNDP) in the Philippines explained that the winning solution showcases the “pivotal role of cutting-edge digital technologies in the creation of strategies for sustainable development in the face of evolving development issues.”

U.S Public Affairs counselor Philip W. Roskamp and PLDT Enterprise Core Business Solutions vice president and head Joseph Ian G. Gendrano congratulates the next group of Pinoy winners.

Sec. de la Peña is also very happy on this second time victory for the Philippines on the global competition of NASA. The first winning solution ISDApp uses “data analysis, particularly NASA data, to be able to help our fishermen make decisions on when is the best time to catch fish.” It is currently being incubated by Animo Labs, the technology business incubator and Fab Lab of De La Salle University in partnership with DOST-PCIEERD. Project AEDES will be incubated by Animo Labs too.

University president Br. Raymundo B. Suplido FSC hopes that NASA Space Apps would “encourage our young Filipino researchers and scientists to create ideas and startups based on space science and technology, and pave the way for the promotion and awareness of the programs of our own Philippine space agency.”

Philippine vice president Leni Robredo recognized Space Apps as a platform “where some of our country’s brightest minds can collaborate in finding and creating solutions to our most pressing problems, not just in space, but more importantly here on Earth.”

“Space Apps is a community of scientists and engineers, artists and hackers coming together to address key issues here on Earth. At the heart of Space Apps are data that come to us from spacecraft flying around Earth and are looking at our world,” explained by Dr. Thomas Zurbuchen, NASA associate administrator for science.

“Personally, I’m more interested in supporting the startups that are coming out of the Space Apps Challenge,” according to DOST-PCIEERD executive director Dr. Enrico C. Paringit.

In the Philippines, Space Apps is a NASA-led initiative organized in collaboration with De La Salle University, Animo Labs, DOST-PCIEERD, PLDT InnoLab, American Corner Manila, U.S. Embassy, software developer Michael Lance M. Domagas, and celebrates the Design Week Philippines with the Design Center of the Philippines of the Department of Trade and Industry. It is globally organized by Booz Allen Hamilton, Mindgrub, and SecondMuse.

Space Apps is a NASA incubator innovation program. The next hackathon will be on October 2–4, 2020.

#SpaceApps #SpaceAppsPH

Filipino developers gather together to address real-world problems on Earth and space using NASA’s free and open source data.

Electron test article during a March 2020 parachute test. Credit Rocket Lab

No, it’s not a high budget Mission Impossible action movie, but it could have been. Tom Cruise wasn’t piloting a helicopter that grabbed a rocket falling back to the Earth. Instead, a crew wearing black Rocket Lab t-shirts with the words “recovery team” written on the back took the skies in helicopters to grab a falling rocket. Since it wasn’t Tom Cruise, the video of the team grabbing a rocket midflight ranked higher on the awesome scale.

Daring capture of Booster

A few weeks ago, Rocket Lab took a major step forward to recover boosters. In a recent release to media, Rocket Lab shared videos successfully grabbing a parachute & test booster out of the sky using a helicopter. On the first try, the helicopter grabbed the first stage test article with a grappling hook.

There are intrinsic risks with helicopters. Recently SpaceX lost a test article when it became necessary to prematurely drop a Crew Dragon test article. However, Rocket Lab did better in the Electron parachute tests. The success marks another step closer for the company in recovering the boosters it uses to launch small payloads into low earth orbit.

Russia seems to see the writing on the wall. No longer can disposable rockets win business for the Russian Space Industry. NASA put an end to the ongoing launches of astronauts into space with the development of domestic. The Russian space industry plans on maintaining or growing market share.

“In 2020, 33 launches are planned, of which 12 launches of satellites under the Federal Space Program, nine launches of commercial vehicles, three from the Guiana Space Center,”

Dmitry Rogozin the head of Roscosmos.

According to https://tass.ru/, Russia is planning on completing 30 commercial launches in 2020. To compete in the international market, Roscosmos announced the cost of launch services will be reduced by more than 30%. The allegation is that American companies are price dumping. With the emergence of SpaceX into the launch sector and other new space companies, the launch vehicle options increased greatly. SpaceX specifically has captured a lot of commercial launch contracts with the partially reusable Falcon 9 rocket. SpaceX has proven the booster reuse capability up to five times and disclosed that the reusability is much greater.

Dmitry Rogozin’s claim of American companies engaging in price dumping may not be a valid comparison. American companies diversified the supply. New innovative rockets have been designed, built and launched by American companies like SpaceX and Rocket Lab.