Toggle light / dark theme

Researchers at University College London (UCL), Universidade de Santiago de Compostela (USC) and biopharma firm FabRx, have managed to convert an everyday smartphone into an on-demand personalized drug 3D printer.

Using the visible light created by a mobile phone screen, the modified M3DIMAKER LUX system has already proven capable of 3D printing blood-thinning tablets in specific shapes, sizes and dosages. Operable via a user-friendly app, it’s hoped that with further R&D, the team’s machine could be deployed in future by those living in isolated areas, under the remote supervision of GPs to ensure patient safety.

“This novel system would help people who need precise dosages that differ from how a medication is typically sold, as well as people whose required dosage may change regularly,” said the study’s lead author Xiaoyan Xu. “The tablet’s shape and size are also customizable, which enables flexibility in the rate at which the medication gets released into the bloodstream.”

Catherine Labadia, an archaeologist at the State Historic Preservation Office, was on vacation when the first text came in from fellow archaeologist David Leslie. The picture on her phone was of a channel flake, a stone remnant associated with the creation of spear points used by Paleoindians, the first humans known to enter the region more than 10,000 years ago. “I responded, ‘Is this what I think it is?’” “It most definitely is,” texted back Leslie, who was on site at the Avon excavation with Storrs-based Archaeological and Historical Services (AHS). “It was all mind-blowing emojis after that,” Labadia says.

But that first picture was just the beginning. By the time the excavation on Old Farms Road was completed after a whirlwind three months in the winter of 2019, the AHS team had uncovered 15,000 Paleoindian artifacts and 27 cultural features. Prior to this dig, according to Leslie, only 10–15 cultural features — non-movable items such as hearths and posts that can provide behavioral and environmental insights — had been found in all of New England.

The site is significant for more than the quantity and types of artifacts and features found. Early analyses are already changing the way archaeologists think of the Paleoindian period, an epoch spanning from about 13,000 to 10,000 years ago of which little is known due to relatively scant archaeological evidence. The forests of that time, for instance, were likely made up of more diverse species of trees than previously thought. And that opens up new interpretations for what Paleoindians ate. Remains found at the excavation also suggest — for the first time — that Paleoindians and mastodons might have overlapped in the region.

A team of researchers at the Institute of Computer Science and Random Systems has built a non-software-based virus detection system using a Raspberry Pi, an H-field probe and an oscilloscope to detect electromagnetic wave signatures of multiple types of viruses. The team presented its system and test results at last month’s ACM Machinery’s Annual Computer Security Applications Conference and published a paper describing their system on ACM’s Research Article page.

The idea behind the new system is that running software generates electromagnetic waves. And each piece of software generates its own unique wave patterns due to the way the software executes its code. The researchers took advantage of this knowledge and began using an H-field probe to capture wave patterns of known computer viruses running on various devices and viewed the results on an oscilloscope. They saw oscilloscope patterns that were unique to individual viruses as they were running. The researchers used that information to program a Raspberry Pi to identify data from the other two devices to recognize known virus wave patterns, using the system as a virus detector. To determine if a virus is running on a computer, IoT device or smartphone, a user places the H-field probe close enough to the device to read the electromagnetic waves that are generated. The Raspberry Pi then reports on whether it found any viruses, and if so, which ones.

Fittingbox’s Frame Removal uses diminished reality to help people pick out new eyeglasses — but the tech’s potential extends far beyond the bridge of your nose.


French company Fittingbox has just unveiled an app that uses a technology called “diminished reality” — the opposite of augmented reality (AR).

The app is designed to help shoppers pick out new eyeglasses, but the tech’s potential extends far beyond the bridge of your nose.

The challenge: Many eyeglass sellers now let you try on specs virtually — just pick a pair off a website, look into the camera on your phone or computer, and thanks to the magic of augmented reality (AR), you can see what the frames look like on your face.

In a groundbreaking new study, researchers at the University of Minnesota Twin Cities used a customized printer to fully 3D print a flexible organic light-emitting diode (OLED) display. The discovery could result in low-cost OLED displays in the future that could be widely produced using 3D printers by anyone at home, instead of by technicians in expensive microfabrication facilities.

The research is published in Science Advances.

The OLED display technology is based on the conversion of electricity into light using an organic material layer. OLEDs function as high quality , which can be made flexible and used in both large-scale devices such as television screens and monitors as well as handheld electronics such as smartphones. OLED displays have gained popularity because they are lightweight, power-efficient, thin and flexible, and offer a wide viewing angle and high contrast ratio.

Apple was hit with a wave of criticism earlier this year when it announced plans to scan iPhones to stop the distribution of Child Sexual Abuse Material (CSAM). Critics fretted that Apple’s hash-checking system could be co-opted by governments to spy on law-abiding iPhone users. In response to the backlash, Apple might end up making changes to that program, but Google has its own way of spotting CSAM, and it might be even more intrusive for those who use all of Google’s cloud services.

The specifics on Google’s CSAM scanning come by way of a warrant issued in early 2020 and spotted by Forbes. According to the filing, Google detected CSAM in Google Drive, its cloud storage platform. And here’s where things get a little weird; the warrant stemming from this report targeted digital artwork, not a photo or video depicting child abuse.

Apple’s system under its “Expanded Protections for Children” banner uses hashes for known child abuse materials, scanning iDevices for matching hashes. This should prevent false positives and it doesn’t require Apple to look at any of the files on your phone. The issue cited most often with this approach is that Apple is still scanning your personal files on your smartphone, and it could be a privacy nightmare if someone manages to substitute different hashes. Apple says this isn’t possible, though.

The immersive tech could eventually allow park visitors to interact with Mickey Mouse and Elsa as images, not cast members in costume.


Disney is joining the metaverse party.

We aren’t talking online gigs or business meetings with avatars. Disney wants to enhance the virtual dimension of its theme parks with its Virtual World Simulator, new technology for which it was granted a patent in the U.S. on December 28.

The system could be used as follows: a user enters a venue or ride in which images are projected onto flat and curved surfaces, creating an immersive virtual environment. The user’s movements are tracked and the projections change accordingly, maintaining the sense of a complex, coherent world. Their shifting viewpoint is gauged with a technique called Simultaneous Localization and Mapping, or SLAM.

Nreal is a China-based startup behind the Nreal Light AR glasses, which aim for a sunglasses-like design. By hooking it up to your (Android) phone, it’s able to project virtual objects in your real environment and even allow you to walk around with position tracking. While we’re not quite there yet, I think the Nreal Light is definitely getting us closer to fully fledged AR glasses.

Cas & Chary Present

Cas and Chary VR is a YouTube channel hosted by Netherland-based duo Casandra Vuong and Chary Keijzer who have been documenting their VR journeys since 2016. They share a curated selection of their content with extra insights for the Road to VR audience.