Using an innocuous bacterial virus, bioengineers have created a biological mechanism to send genetic messages from cell to cell. The system greatly increases the complexity and amount of data that can be communicated between cells and could lead to greater control of biological functions within cell communities…
In harnessing DNA for cell-cell messaging the researchers have also greatly increased the amount of data they can transmit at any one time. In digital terms, they have increased the bit rate of their system. The largest DNA strand M13 is known to have packaged includes more than 40,000 base pairs. Base pairs, like 1s and 0s in digital encoding, are the basic building blocks of genetic data. Most genetic messages of interest in bioengineering range from several hundred to many thousand base pairs.
Ortiz was even able to broadcast her genetic messages between cells separated by a gelatinous medium at a distance of greater than 7 centimeters.
“That’s very long-range communication, cellularly speaking,” she said.
Down the road, the biological Internet could lead to biosynthetic factories in which huge masses of microbes collaborate to make more complicated fuels, pharmaceuticals and other useful chemicals. With improvements, the engineers say, their cell-cell communication platform might someday allow more complex three-dimensional programming of cellular systems, including the regeneration of tissue or organs.
Continue reading “Stanford Bioengineers Introduce ‘Bi-Fi’ — The Biological Internet”