Toggle light / dark theme

GatgetBridge is currently just a concept. It might start its life as a discussion forum, later turn into a network or an organisation and hopefully inspire a range of similar activities.

We will soon be able to use technology to make ourselves more intelligent, feel happier or change what motivates us. When the use of such technologies is banned, the nations or individuals who manage to cheat will soon lord it over their more obedient but unfortunately much dimmer fellows. When these technologies are made freely available, a few terrorists and psychopaths will use them to cause major disasters. Societies will have to find ways to spread these mind enhancement treatments quickly among the majority of their citizens, while keeping them from the few who are likely to cause harm. After a few enhancement cycles, the most capable members of such societies will all be “trustworthy” and use their skills to stabilise the system (see “All In The Mind”).

But how can we manage the transition period, the time in which these technologies are powerful enough to be abused but no social structures are yet in place to handle them? It might help to use these technologies for entertainment purposes, so that many people learn about their risks and societies can adapt (see “Should we build a trustworthiness tester for fun”). But ideally, a large, critical and well-connected group of technology users should be part of the development from the start and remain involved in every step.

To do that, these users would have to spend large amounts of money and dedicate considerable manpower. Fortunately, the basic spending and working patterns are in place: People already use a considerable part of their income to buy consumer devices such as mobile phones, tablet computers and PCs and increasingly also accessories such as blood glucose meters, EEG recorders and many others; they also spend a considerable part of their time to get familiar with these devices. Manufacturers and software developers are keen to turn any promising technology into a product and over time this will surely include most mind measuring and mind enhancement technologies. But for some critical technologies this time might be too long. GadgetBridge is there to shorten it as follows:

- GadgetBridge spreads its philosophy — that mind-enhancing technologies are only dangerous when they are allowed to develop in isolation — that spreading these technologies makes a freer world more likely — and that playing with innovative consumer gadgets is therefore not just fun but also serves a good cause.

- Contributors make suggestions for new consumer devices based on the latest brain research and their personal experiences. Many people have innovative ideas but few are in a position to exploit them. Contributors rather donate their ideas that see them wither away or claimed by somebody else.

- All ideas are immediately published and offered free of charge to anyone who wants to use them. Companies select and implement the best options. Users buy their products and gain hands-on experience with the latest mind measurement and mind enhancement technologies. When risks become obvious, concerned users and governments look for ways to cope with them before they get out of hand.

- Once GadgetBridge produces results, it might attract funding from the companies that have benefited or hope to benefit from its services. GadgetBridge might then organise competitions, commission feasibility studies or develop a structure that provides modest rewards to successful contributors.

Your feedback is needed! Please be honest rather than polite: Could GadgetBridge make a difference?

Twenty years ago, way back in the primordial soup of the early Network in an out of the way electromagnetic watering hole called USENET, this correspondent entered the previous millennium’s virtual nexus of survival-of-the-weirdest via an accelerated learning process calculated to evolve a cybernetic avatar from the Corpus Digitalis. Now, as columnist, sci-fi writer and independent filmmaker, [Cognition Factor — 2009], with Terence Mckenna, I have filmed rocket launches and solar eclipses for South African Astronomical Observatories, and produced educational programs for South African Large Telescope (SALT). Latest efforts include videography for the International Astronautical Congress in Cape Town October 2011, and a completed, soon-to-be-released, autobiography draft-titled “Journey to Everywhere”.

Cognition Factor attempts to be the world’s first ‘smart movie’, digitally orchestrated for the fusion of Left and Right Cerebral Hemispheres in order to decode civilization into an articulate verbal and visual language structured from sequential logical hypothesis based upon the following ‘Big Five’ questions,

1.) Evolution Or Extinction?
2.) What Is Consciousness?
3.) Is God A Myth?
4.) Fusion Of Science & Spirit?
5.) What Happens When You Die?

Even if you believe that imagination is more important than knowledge, you’ll need a full deck to solve the ‘Arab Spring’ epidemic, which may be a logical step in the ‘Global Equalisation Process as more and more of our Planet’s Alumni fling their hats in the air and emit primal screams approximating;
“we don’t need to accumulate (so much) wealth anymore”, in a language comprising of ‘post Einsteinian’ mathematics…

Good luck to you if you do…

Schwann Cybershaman

Greetings fellow travelers, please allow me to introduce myself; I’m Mike ‘Cyber Shaman’ Kawitzky, independent film maker and writer from Cape Town, South Africa, one of your media/art contributors/co-conspirators.

It’s a bit daunting posting to such an illustrious board, so let me try to imagine, with you; how to regard the present with nostalgia while looking look forward to the past, knowing that a millisecond away in the future exists thoughts to think; it’s the mode of neural text, reverse causality, non-locality and quantum entanglement, where the traveller is the journey into a world in transition; after 9/11, after the economic meltdown, after the oil spill, after the tsunami, after Fukushima, after 21st Century melancholia upholstered by anti-psychotic drugs help us forget ‘the good old days’; because it’s business as usual for the 1%; the rest continue downhill with no brakes. Can’t wait to see how it all works out.

Please excuse me, my time machine is waiting…
Post cyberpunk and into Transhumanism

carboncopies.org

Concerns arose recently about the concept of so-called “catchment areas”, evolutionary developments that result in a very tight interdependence between requirements for survival and behavioral drives. In particular, the concern has been raised that such catchment might render any significant modification of the human mind, such as through brain enhancement, impossible (Suzanne Gildert, “Pavlov’s AI: What do superintelligences REALLY want?”, Humanity+@Caltech, 2010).

The concept of a catchment area assumes that beneath the veneer of goal-oriented rational planning, learned behavior and skill lies a basic set of drives and reward mechanisms. The only purpose of those drives and reward mechanisms is genetic survival, a necessary result of eons of natural selection. It follows that all of our perceived goals, our desires and interests, the pursuit of wealth, social acceptance or fame, love, scientific understanding, all of it is merely a means to an end. All of it points back to the set of drives and reward mechanisms that best enable us as individuals, us as a tribe and us as a species to survive in our given environment.

Why does that describe a catchment area, a type of prison of behavior? It is assumed that the distribution of behaviors that have enabled long-term survival is a narrow one with little real variance. Stray too far from the norm and your behaviors become counter-productive to survival. Worst of all, if you recognize your enslavement to those single-purpose drives and reward mechanisms, if you realize that they have no meaning beyond a survival that itself links to no universal purpose, then you risk embarking upon a nihilistic course that would likely end in your extermination or self-termination.

How risky is modifying reward mechanisms?

If the catchment problem is real, and if it indeed implies that we live in a precarious balance of behavioral drives that keep us alive, then any modification brings with it the risk that we tip the balance. One significant change, or a series of changes could push us into a condition where our mental reward system is no longer aligned with requirements for survival. One form of this problem has been popularized as “wire-heading” (Larry Niven, Known Space & Ringworld novels, 1970–1996), where an individual exists in a short-circuited reward-loop, living only to repeatedly and directly deliver reward stimulus to herself.

There are of course numerous possible critiques of the catchment hypothesis, which bears a heavy burden of proof. There is plenty of evidence that evolution is not an actual optimizer. If the process of natural selection is not an optimizer, then why should we assume that we exist in a delicately optimized state? We may also consider changes in our mental experience in the recent past. For example, humans generally live longer now than they did previously, so that the extended experience itself is a novel condition for human mental function, and brings with it different survival challenges to which behavior needs to be adapted. And, while we share many behavioral traits as a species, there are clearly differences in behavior between individuals, most of whom appear to function and survive. In fact, some behaviors do not seem at all optimal for survival, such as extreme sports. Those critiques do not mean that the notion of catchment areas is wrong, but they demonstrate that we must take care before drawing extreme conclusions in the matter.

If we represent behavioral traits as variables in a multi-dimensional landscape, and the survival suitability of combinations of traits as elevation in that landscape, does the landscape look like a Himalayan mountain ridge with sharp peaks, steep cliffs and deep valleys? Or does it look more like a rolling vista of hills, or perhaps even a concatenation of several contiguous high-altitude plateaus? If we do not know what this landscape looks like, then it is extremely difficult to make informed statements about the results that we should expect when reward mechanisms and consequent behaviors are modified.

Can we modify while specifying conditions for survival?

Is there anything about past developments that we might use as a guide, to tell us if modifications of reward mechanisms and behaviors are survivable, and how that might work? I believe there is. I think the process is unavoidable, as it is a result of selection among differences. Darwin got us here, and he can get us out too.

Let us assume that modifying our reward mechanisms can result in personal destruction. That is not a fanciful assumption. We need only look at the worst-case scenarios in cases of addiction to see relevant examples. Similarly, we may observe that suicide is such a case, unless it is a sacrifice that serves the greater purpose of tribe or species survival.

Do all modifications lead to destruction? That seems highly unlikely, given that humans have not existed forever. There have been ancestors who probably had different brains and at least somewhat different drives and reward mechanisms. The further back you look, the more different and strange those drives and mechanisms may seem, since the species involved will have had somewhat different challenges and requirements for survival.

If there was a way that led from there to what we are now through natural selection, then why should we assume that this is the terminal state? It seems reasonable to assume that if we carried out a large number of experiments in which we modified our brains and their underlying drives and reward mechanisms to some degree, some of those experiments would not result in catastrophe. There would still be a selection process. The question is not whether there exist ways to achieve brain enhancement. Rather, we should seek out the best process. We should determine how to carry out intelligent experimentation that minimizes that rate of failure and maximizes the rate of success.

Image attribution

Wirehead Darwin: modified from George Grantham Bain press photo collection, purchased by the library of Congress. No restrictions.
Survival landscape: modified Height map (Wikipedia), unknown author. Public domain.

Abstract

American history teachers praise the educational value of Billy Joel’s 1980s song ‘We Didn’t Start the Fire’. His song is a homage to the 40 years of historical headlines since his birth in 1949.

Which of Joel’s headlines will be considered the most important a millennium from now?

This column discusses five of the most important, and tries to make the case that three of them will become irrelevant, while one will be remembered for as long as the human race exists (one is uncertain). The five contenders are:

The Bomb
The Pill
African Colonies
Television
Moonshot


Article

My previous column concentrated on the Hall Weather Machine[1], with a fairly technocentric focus. In contrast, this column is not technical at all, but considers the premise that if we don’t know our past, then we don’t know what our future will be.

American history teachers praise Billy Joel’s 1980s song ‘We Didn’t Start the Fire’ for its educational value. His song is a homage to the 40-years of historical headlines since his birth in 1949. Before reading further, go to http://yeli.us/Flash/Fire.html to hear it and to see the photographs that go with each phrase of the song.

Which of Joel’s headlines do you think will be most important, when considered by people a millennium from now? A thousand years is a long time.

Many of the popular figures Joel mentions from politics, entertainment, and sports have already begun to fade from living memory, so they are easy to dismiss. Similarly, which nation won which war will be remembered only by historians, though the genetic components of descendants affected by those wars will reverberate through the centuries. An interesting exercise would consider the most significant events of the eleventh century. English-speaking historians might mention the Battle of Hastings, but is Britain even a world power any longer? Where are the Byzantine, Ottoman, Toltec, and Holy Roman empires of a thousand years ago?

Note that there may be a difference between what most people 1,000 years from now will consider to be the most important and what may actually be the most important. In this case, just because the empires mentioned above are gone doesn’t necessarily mean they didn’t have a significant role in creating our present and our future — we may simply be unconscious of their effect.

I will consider a few possibilities before arguing for one headline that is certain to be remembered, rightfully so, ten thousand years from now — if not longer.


The Bomb

First, most thoughtful people would include the hydrogen-bomb. A few decades ago, almost everyone would have agreed wholeheartedly. At that time, the policy of Mutual Assured Destruction hung heavily over every life in the USSR and the United States (if not the world). With the USSR now gone, and Russia and USA not quite at each others throats, the danger from extinction via a full-out nuclear exchange may be lower. However, the danger of a nuclear attack that kills a few million people is actually more likely.

Up till now, for a nation to become a great power and thereby wield great influence, it needed the level of organization that depended on civilization. No matter how brutal their government or culture — such as Nazi Germany, Communist Soviet Union, or Ancient Rome — their organization depended on efficient education, competent administration, large-scale engineering, and the finer things in life — to motivate at least the elite. Even then, some of the benefit would trickle down as “a rising tide raises all boats”. Competent and educated slaves were a key to Roman Civilization, just as educated bureaucrats were essential to the Nazi and Soviet systems.

Now, however, we are getting into a situation in which atomic weapons give the edge to the stark-raving mad — anyone who is willing to use them. This situation could be most destructive to prosperous, open, humanistic, and civilized nations, because they may be less willing to give up their comfort and freedom to defend against this threat. It appears very likely that within a decade or less, any ragtag collection of pip-squeak lunatics will be able to level the greatest city on Earth, even if it is defended by the world’s strongest army. This is because the advances in nuclear enrichment technology (along with all technology) will make it easier for pip-squeak lunatics to acquire or manufacture nuclear bombs.

That being said, however, it is also true that really advanced technology — specifically privacy-invasive information technology, perhaps in the form of throwaway supercomputers in a massive network of dustcams — might stop the pip-squeak lunatics before they can build and deploy their nuclear bombs.

In addition, another decade of technological development will result in nanobots. By the way, this isn’t just my prediction (the defense of which is a subject of a future column), but also the opinion of inventive dreamers such as Raymond Kurzweil, and of conservative achievers such as Lockheed executives. The development of nanobots means that cellular repair of radiation damage may also become possible (though the problems of controlling trillions of nanobots and of how to detect and repair radiation damage are additional separate and very difficult engineering and biological issues). Michael Flynn examined some of the nuclear strategic issues of this nanotech application in his short story “Washer at the Ford”.[2]

The problem is that there may be a five year window during which our only defense against nuclear-bomb-wielding pip-squeak lunatics will be privacy-invasive information technology, run by the FBI, NSA, and CIA, and their counterparts around the world. Yes, you should be worried, but probably not for the reasons you may think. The danger is not as much that these government agencies may infringe on your rights, but that the very nature of their jobs means that they won’t be able to apply Kranstowitz’s weapon of openness[3] against those who want us dead. To make matters worse, the U.S. intelligence agencies will likely follow the complex laws[3] that protect the privacy of U.S. persons[4] — to the exclusion of catching the nuclear lunatics. This is one reason that FBI, NSA, and CIA directors get new gray hairs every night.

Another problem is that the pip-squeak lunatics will also be able to buy cheap, privacy-invasive information (and other) technologies. Petro-dollars, peasant-made knickknacks, and mining rights have given ethically-challenged individuals in third-world countries astonishing wealth. Many of the world’s richest men live in the world’s poorer countries.[5] They have also learned cruel and clever means by which to keep their peasants down. The question is whether or not they can run the expensive technology they bought with their wealth and power. Buying cheap technology is one thing, but controlling it requires skilled people, and skilled people are more difficult to control. Can the dictators keep a small cadre of trusty elites to run the technology? North Korea and Iran are interesting (and rather scary) test cases at the moment.

Another wild card is that while some dictatorships have become more totalitarian, there comes a point at which the downtrodden peasants (and students, and factory workers, and shopkeepers) don’t have anything to lose but their miserable lives. Meanwhile, totalitarian governments can’t keep up with technology as quickly as free ones can. This is when the system collapses of its own weight, and that is what happened to the USSR. The cell phone, Facebook, and Twitter-fed revolutions in Egypt, Libya, Syria, and elsewhere also seem to prove this point. Thus far, the Chinese leaders have been smart enough to adapt their economy without adapting their government. The jury is still out as to what will happen to them next (it may not be pretty for us if it ends badly, and there are many ways it can end badly).

Another wild card to consider is that most of the existing nuclear warheads are in the United States, Russia, and China. Americans conveniently forget, but non-Americans are very aware that the United States is (thus far) the only nation that has actually used an atomic bomb to kill people. On the other hand, America doesn’t have highly corrupt officials in charge of our nuclear arsenal (Pakistan), nor is it controlled by a near-dictator (Russia), nor by a totalitarian crazed nut-job (North Korea). In addition, a number of important Japanese leaders have publicly said that that controversial decision to bomb Hiroshima and Nagasaki was the correct one–“It could not be helped.“[6] A similar case might be made for Israel, which is surrounded by overwhelming numbers of Arab nations. Given the tensions in the area, a preemptive strike by Israel seems possible, if not likely. The important question then becomes: Under what grounds, if any, could such usage be justified? Of course, Iranian and other Arab leaders have often called for the total destruction of Israel, and eventually one of them may be willing to try it. On what grounds could they be justified?

Another issue is that once we lose New York or some other major city, Americans will accept any solution — including a totalitarian police state. So will the people of other democratic republics if they lose a major city to nuclear terrorists. But the solution is not necessarily a police state. David Brin has answered the “who guards the guardians” question with a clever answer: “We all do.” Over-simplified, his solution is to kiss most of your privacy goodbye. Either that or kiss your life, your liberty, and property, and your privacy all goodbye. Brin proposes that we should all submit to being on camera most of the time — as long as the camera essentially points both ways so we know who is watching us — i.e. the police, our neighbors, the pervert three blocks away, and our governments will know that we are watching them too. We must all shoulder the responsibility of policing our neighborhoods and our governments. The world will be like big village in which everyone knows everyone else’s business, but it’s OK because we are all accountable for our actions. Given the fact that human beings only behave when held accountable, it is the only real solution.[7]

Some may think it naive to expect that governments would ever allow their citizens to observe them in return for their observing us. On the other hand, between the increasing calls for government transparency, and the fact that even the chief of the IMF can be taken down by an lowly maid (with the help of the rule of law), there is hope. Not only that, but many of us have already given away much of our privacy on Facebook and YouTube. Don’t worry about it. Maybe I’m still a wide-eyed optimist, but look at the fall of the USSR empire. Nobody with two brain cells to rub together could have possibly predicted that it could have been so bloodless.

DARPA will certainly look for technological answers for nuclear bomb-related problems such as the nightmare of screening shipping containers. They will probably find some solutions, but during the critical transition phase towards productive nanosystems, will they be able to make those solutions affordable?

One nanotech solution to stopping nuclear bombs that are hidden in shipping containers is to stop all physical shipping altogether and just trade files over the internet, printing whatever you want on our desktops (BTW, you can build a very large printer in two steps). Our only problem then would be keeping our computer virus detectors up to date so that we don’t print something nasty.

To summarize, if anybody is around 1,000 years from now, then the nuclear bomb will not be considered an important issue.


The Pill

The second historically consequential development in the past 50 years that many people will propose as significant is the contraceptive pill.

Some claim that the Pill is necessary because we have a population problem. When I was in college in the 1970’s, it was “proven” to me, with the aid of computer models, that overpopulation was going to be the reason we were going to have food riots in the United States by 1985. So naturally, I’m as skeptical about overpopulation as I am about the imminent rapture. Everyone probably agrees that overpopulation results when the population exceeds the sustainable carrying capacity of the environment. But what determines that capacity? Technology multiplies it while ignorance, injustice, and war decrease it. On Earth today, there is currently no correlation between standard of living and population density.[8]

That being said, in a closed system, unlimited human population growth could result in a situation worse than simple human extinction. Natural ecosystems have population boom/crash cycles all the time, but other species don’t have access to nuclear bombs and other devices that can obliterate habitats. The overpopulation disaster on Easter Island occurred with a primitive culture. It still has grass, but not much of an ecosystem. Imagine what could have happened with modern technology.

The Pill fundamentally changed the relationship of men and women, the place of children in a family and, on the macro level, population dynamics. The family is the basic building block of society and civilization, not only because it is an economic unit (you don’t pay your spouse to wash the dishes or take out the garbage), but more importantly, because the family critically shapes the next generation. Therefore, a large change in family structures will have far-reaching effects, at least in the “short run” of five to ten generations. However, to steal from Jerry Pournell and Larry Niven: “Think of it as evolution in action.“[9] The people who embrace contraception as a path to “the good life” will (evolutionarily speaking) remove their vote for influencing their future within a few generations. It is true that for humans, memes may carry as much weight as genes, but the same process applies — as long as meme propagation is kept below a critical level, perhaps by co-traveling xenophobic memes. On the other hand, people who don’t have much of their material resources tied up in children may have more time to devote to meme propagation. However, many studies have shown than the people who have the greatest impact on teens and pre-teens are their parents.[10]

One possible result is that a millennium from now, the Pill will be a small blip, as inconsequential as the Shakers, and for essentially similar reasons. Nanotechnology-enabled life extension techniques will extend that blip for a while, but because the prolific pro-natalists will continue having even more children for their longer lives, more pro-natalists will be born to outvote the anti-natalists. This is why the Jewish Knesset now has a significantly higher percentage of Ultra-Orthodox than when it began,[11] why Utah’s government is almost 100% Mormon,[12] and why the Amish are one of the fastest growing minority in the world, with an average of 6.8 children per family.[13]

The opposing trend is controlled by a number of factors. First, the birth rate goes down as women’s educations go up. This occurs partially because practically speaking, it is more difficult to go to school while being married and raising children. More subtly, however, it is because school is an investment in learning a professional trade — it is a different investment than children. In addition, women and men are implicitly and explicitly taught that a better career is more important than raising more children.

The problem isn’t that women are being educated. The problem is that if they are taught something that results in the extinction of our egalitarian, humanistic, and liberal society by one that is misogynistic, xenophobic, and unjust, then something is wrong.

One weapon of the contraceptive culture is the reeducation of the pro-natalist’s children. Proponents of secularization would call this “giving people free access to all information” not “reeducation”. But when Bibles are banned from the classroom, and students are taught in many ways that they are just animals, it seems like imposition of a secular viewpoint. At least they could teach the debate — and at the end of the semester, the students could try to guess the teacher’s bias (if they can’t, then the teacher presented both views with equal force).

There are more than a million home-schooled children in the U.S., up to two-thirds of whom are there primarily because their parents fear the imposition of our government’s ideas on their children.[14] This quiet protest is so feared by governments that parents are prosecuted for doing this, not only in all totalitarian countries but even in some democratic nations.[15] The alternative is that the governments of open, liberal, and secularized nations (that accept contraception) will decide that the vote of the increasing minority is wrong. Could their right to vote be taken away? Of course it can; it has happened before.

A pessimistic view of this possibility of disenfranchisement is also supported by the prevalence of abortion in liberal democracies. Given the accuracy of ultrasound imagery, if we can ignore the right to life for our most innocent and helpless, then how safe is something as meager as the right to vote? Niemöller’s poem about trade unionists, Communists, and Catholics comes to mind.[16] So do the events in ancient Egypt, during the three or four hundred years between the famines that Joseph ameliorated (Genesis 50:22). The Egyptian upper class used contraception[17], and they felt threatened by the increasing numerical growth of the Jews, who had strict injunctions against it.

Is it good for our country that more than a million children are being taught by their parents? What if rebellious parents are teaching strange and dangerous ideas? How do we decide which ideas are dangerous? Do we censor and suppress them? After all, ideas have consequences.

The answer is that there are limits to what parents can do, but very few — if any — on what they teach. The whole point about freedom of religion is that we can believe what we want, as long as we do not destroy society or individuals with our actions. Our constitution was written not to limit individuals, but to put strict limits on government, since it is inherently more powerful.

The temptation to avoid having children is not limited to any particular culture. The reason is simple: raising children is an expensive, risky, and difficult investment. Parents must be willing to give up fancy vacations, luxury cars, time to themselves, a good night’s sleep, stress on their marriage, and many other things, thus weighing against the pro-natalist agenda. However, the culture that teaches that children are a blessing and a worthwhile investment instead of a cost will overcome those that do not — even if it tends to encourage people to be ignorant, misogynist, racist, and illogical (like two polygamist religions that start with the letter “M“[18]).

Cyril M. Kornbluth’s 1951 short story “The Marching Morons” illustrates another potential downside to the anti/pro-natalist issue by portraying a scenario in which selective pressure resulted in smart people breeding themselves out of existence. It also, despite the derogatory title, provides a warning: the originator of the “Final Solution” (placing all the fertile morons onto one-way rockets to nowhere) ends up screaming futilely as he himself is loaded on one of the last rockets. Kornbluth’s main premise seems logical. People are often willing to trade children for the better material things and higher standard of living, and those with more education are more willing to do so. But is the resulting cost to society worth it?

What will happen when productive nanosystems and advanced software lowers the price of goods and services to very low levels? Many other things will happen at the same time, but in a society of economic abundance, the expense of children will drop significantly — and will be limited only by attention span and desire (and possibly expanded by reproductive-enhancing technologies including parthenogenesis and male pregnancy). Is there a gene for liking children? Or is it a meme that is culturally transmitted? Evolution favors both. Of course, evolution may also favor a “Boys from Brazil“[19] scenario (in which numerous clones of a dictator are grown to reinstate his rule). This strategy may be successful as long as the clones survive to adulthood and can reproduce.

While a contraceptive culture is non-sustainable, especially in the face of a competing culture whose population is growing, it must be noted that a pro-natalist culture is also non-sustainable. Isaac Asimov pointed out that even if we could overcome all technological obstacles, any growth rate will eventually result in humanity becoming a big ball of flesh, expanding at the speed of light (BOFESOL, or BOF for short). At a modest 3% rate, we will reach the initial BOF in only 3,584 years. After that, the speed of light will limit growth.

However, the fact that a contraceptive culture is non-sustainable in a significantly shorter term than the pro-natalist one is why it makes sense for governments to support traditional religions in their efforts to maintain traditional morality and fertility. The difficult problem is finding ways to ensure the survival of a culture without it becoming xenophobic. This is difficult to do when we think that we have Absolute Truth and the One True Religion on our side. But then exactly how do we know that our particular set and ordering of values is the objectively correct one? Note that the denial of the existence of any objectively maximum set of values exists is itself a particular set of values. And note also that sustainability and tolerance are also values that, like all values, must be assumed because they cannot be proven.

Given the contradictory evidence and shifting values, it is likely that equilibrium between pro-natalist and contraceptive meme sets can never be reached. Instead, humanity will likely experience benign (and sometimes not-so benign) boom and crash cycles similar to those that natural ecosystems suffer from. Only for us, our cycles will be constrained by opinions and technological capabilities, not by predators.


African Colonies

A third historical event that may be of consequence a thousand years from now is “Belgians in the Congo”. The Belgian regime in the Congo was about as brutal and inhuman as any the Europeans imposed on its colonies. However, the European Empires spread Christianity in Africa — where it remains a fast-growing religion. This African event may be as significant as when the Spanish and Portuguese spread Christianity in Latin America, and will bring about a fundamentally different world than if Africa had gone Islamic, Hindu, or Confucian. Think of Latin American worshiping the Aztec gods with human sacrifice, or the impact on us if it were an Islamic Civilization. We would live in a very different world.

Then again, Africa may still turn Islamic. After all, Islam generally values large families, just like the fast-growing Mormon and Amish religions do. On the other hand, when Muslims become secularized, they reduce the number of their offspring, just like secularized Christians do — hence their accompanying philosophies will suffer the same fate. The result will be that in order to survive in the long term, future generations must be hostile to secularization, and probably hostile to each other’s religious views also (not a pleasant thought, even if they do share many of the same values). Over the next thousand years, in view of the exponential increase in technological power, which viewpoint will win? The answer depends on science, theology, and demographics.

A handful of nominal Christians destroyed the Aztec civilization, not because of their technology (though that helped), but because the Aztec civilization was based on a great and powerful falsehood — that in order for the sun to rise every morning, human blood needed to be shed — thereby earning the hatred of the neighboring tribes whose blood it was that was usually shed. Islam is not as false as the Aztec religion — otherwise it would not have lasted this long. But the jury is still out on whether it can survive the extreme technological advancement that productive nanosystems will bring. Will fanatical Muslims be able to design and build the nanotech equivalent of 747 jets that they can fly into the skyscrapers of their enemies? Or will they just learn how to use it in unexpected and terrorizing ways? Given the high level of technological advancement in the Muslim empire a thousand years ago, the answer seems to be “yes” to both questions. However, Islam’s ultimate rejection of reason is its Achilles heel, and in the past it helped lead to the decline of the Ottoman Empire after its peak in the 1300s. This is because Islam’s idea of Allah’s absolute transcendence is incompatible with the idea that the universe is ordered and knowable. Psychologically, the problem is that if the universe is not ordered and knowable, then why bother learning and doing science? Meanwhile, Hinduism has many competing gods, and this leads (like in ordinary paganism) to its rejection of the logical principle of contradiction — without which science is impossible. Confucianism seems to be more a moral code than a religious one, so it seems that it could be accommodating to technology — but that didn’t seem to help its practitioners develop it before they collided with the West. Similarly with Buddhism. Meanwhile, the decadent West’s deconstructionism and nihilism is gnawing at its parent’s roots, rejecting reason and science as merely tools of power.

It can be claimed that religious views will keep changing and splitting into new orthodoxies. In that case, the result will be an ever-shifting field of populations and sub-populations with none winning out completely over the others. But as far as I can tell, neither Judaism, Catholicism, Buddhism, nor Islam have changed any of their core beliefs in the past few millennia. In contrast, the Mormons have changed a number of their major doctrines, and so have the Protestants. This does not bode well for their long-term survival as a coherent organization, though the Mormons do have their high fertility on their side.

At the moment, the whole world is copying the Christian-rooted West, as many of their scientific elite are educated in Europe and the United States. It is difficult to say to what extent they understand the philosophical underpinnings of science. When their own universities start to educate their elite, their cultural assumptions will probably displace the Judeo-Christian/Greek philosophy of the West. Then what? It depends if science, which is the foundation of technological superiority, is simply a cargo cult that works. My claim is that science will only continue working for more than a generation or two if its underlying assumptions come with it — that the universe is both ordered and knowable.

These Judeo-Christian assumptions are huge — though atheists, agnostics, and (maybe) Muslims and Buddhists should also be able to accept them. However, every scientist still faces the question of why the universe is ordered and knowable (and if you’re not constantly asking the next question, especially the “why” question, then you’re not a very good scientist). The theistic answer of design by creator[20] is not too far away from the assumption of an ordered and knowable universe, and from there, one begins skating very close to the concept that we are made “Imago Dei”–in God’s image. Some people think that there is too much hubris and ego to that belief, but you don’t see dolphins landing on the Moon, or chimpanzees creating great symphonies (or even bad rap).

“Imago Dei” is the most logical conclusion once we can explain why the universe is predictable and knowable. And being made in God’s image has other implications, especially in terms of our role in this universe. Most notably, it promotes the idea of human beings as powerful stewards of creation, as opposed to subservient subjects of Mother Nature, and it will pit Nietzschean Transhumanists and Traditional Catholics against Gaian environmentalists and National Park Rangers.


Television

Writing has been around for thousands of years, while the printing press has been around for almost 600. It would seem that the printing press was the one invention that, more than anything else, enabled the development of all subsequent inventions. Television could be considered an improvement over writing, and given that large amounts of video can be subject to slightly less interpretation than an equal amount of effort writing text, our descendants might get a better, more complete depiction of history than they could get from just text or physical artifacts. However, the television that Joel mentioned was controlled by the big three television networks. This was because the cost to entry was so high (currently from $200,000 to $13 million per episode). So the role of television of the 1960s was similar to the role of books in Medieval Europe, where the cost of a book was equivalent to the yearly salary of a well-educated person). For this reason, Joel’s headline will not be considered significant, though he was close.

He was close because television’s electronic video display offspring, the computer — especially when connected to form the Internet — will certainly be significant. It will be as significant as the nuclear bomb and the Pill combined, if and when Moore’s Law ushers in the Singularity. But Joel was writing a song, not engaging in future studies. We might as well criticize him for not mentioning the coining of the word “nanotechnology”.


Moonshot

A few of Billy Joel’s headlines may be remembered 1,000 years from now, but none mentioned so far will really be significant.

I would go out on a limb and say that other than the scientific and industrial revolutions, the American Constitution, and the virtual abolishment of slavery, little of consequence has happened in the last thousand years. There is, however, one significant event that happened in the 1400s. No, it’s not Spain kicking out the Muslims. It’s not even Admiral Zheng He, Admiral of China’s famed Dragon Fleet, sailing to Africa in the 1420s, though we’re getting warmer. As impressive as they were, Zheng’s voyages did not change the world. What did change the world was the tiny fleet of three ships that returned from the New World to Spain in 1492.

Apollo and Star Trek both pointed to the next and final frontier. It is true that little has happened in the American space program since Apollo, and with the retirement of the 1960s-designed Space Shuttle, even less is expected. This poor showing has occurred because the moon shot, as awe-inspiring as it was, was a political stunt funded for political reasons. The problem is that it didn’t pay for itself, and we therefore have a dismal space program. However, with communication, weather, and GPS satellites, we have a huge space industry. It’s all about the value added.

On the other hand, it’s the governmental space programs that seem to make the initial (and necessary) investments in the basic technology. More importantly, these programs give voice to that which makes us human — “to look at the stars and wonder”.[21]

Realistically, looking at the historical records of Jamestown and Salt Lake City, space development will occur when prosperous upper class families can sell their homes and businesses to buy a one-way ticket and homesteading tools. In today’s money, that would be about one or two million dollars. We have a long way to go to achieve that price break, though it helps that Moore’s Law is exponential.

There have only been a dozen men on the Moon so far, but Neil Armstrong will be remembered far longer than anyone else in this millennium. After the human race has spread throughout the solar system, and after it starts heading for the stars, everyone will remember who took the first small step. The importance of this step will become obvious after the Google Moon prize is won, and after Elon Musk and his imitators demonstrate conclusively that we are no longer in a zero sum game.

That is something to look forward to.

Tihamer Toth-Fejel is Research Engineer at Novii Systems.


Acknowledgments

Many thanks to Andrew Balet, Bill Bogen, Tim Wright, and Ted Reynolds for their significant contributions to this column.


Footnotes

1. Tihamer Toth-Fejel, The Politics and Ethics of the Hall Weather Machine, https://lifeboat.com/blog/2010/09/the-politics-and-ethics-of-the-hall-weather-machine and http://www.nanotech-now.com/columns/?article=486
2. Michael Flynn, Washer at the Ford, Analog, v109 #6 & 7, June & July 1989.
3. Arthur Kantrowitz, The Weapon of Openness, http://www.foresight.org/Updates/Background4.html
4. United States Signals Intelligence Directive 18, 27 July 1993, http://cryptome.org/nsa-ussid18.htm
5. e.g. Mexico, India, Saudia Arabia, and Russia http://www.forbes.com/lists/2010/10/billionaires-2010_The-Worlds-Billionaires_Rank.html Also, the petro-dollar millionaires in the Mideast http://www.aneki.com/millionaire_density.html
6. There is an interesting discussion at http://en.wikipedia.org/wiki/Debate_over_the_atomic_bombings_of_Hiroshima_and_Nagasaki
7. David Brin,The Transparent Society, Basic Books (1999). For a quick introduction, see The Transparent Society and Other Articles about Transparency and Privacy, http://www.davidbrin.com/transparent.htm.
8. Tihamer Toth-Fejel, Population Control, Molecular Nanotechnology, and the High Frontier, The Assembler, Volume 5, Number 1 & 2, 1997 http://www.islandone.org/MMSG/9701_05.html#_Toc394339700
9. Larry Niven and Jerry Pournelle, Oath of Fealty. New York : Pocket Books, 1982
10. KIDS COUNT Indicator Brief, Reducing the Teen Birth Rate, July 2009. http://www.aecf.org/~/media/Pubs/Initiatives/KIDS%20COUNT/K/KIDSCOUNTIndicatorBriefReducingtheTeenBirthRa/Corrected%20teen%20birth%20brief.pdf
11. From a small group of just four members in the 1977 Knesset, they gradually increased their representation to 22 (out of 120) in 1999 (http://en.wikipedia.org/wiki/Haredi_Judaism). The fertility rate for ultra-Orthodox mothers greatly exceeds that of the Israeli Jewish population at large, averaging 6.5 children per mother in the ultra-Orthodox community compared to 2.6 among Israeli Jews overall (http://www.forward.com/articles/7641/ ).
12. As of mid-2001, the Governor of Utah, and all of its Federal senators, representatives and members of the Supreme Court are all Mormon. http://www.religioustolerance.org/lds_hist1.htm
13. Julia A. Ericksen; Eugene P. Ericksen, John A. Hostetler, Gertrude E. Huntington. “Fertility Patterns and Trends among the Old Order Amish”. Population Studies (33): 255–76 (July 1979).
14. 1.1 Million Homeschooled Students in the United States in 2003. http://nces.ed.gov/nhes/homeschool/
15. HOMESCHOOLING: Prosecution is waged abroad; troubling trends abound in US http://www.bpnews.net/BPnews.asp?ID=34699
16. http://timpanogos.wordpress.com/2010/02/26/quote-of-the-moment-martin-niemoller-i-did-not-speak-out/
17. http://www.patentex.com/about_contraception/journey.php
18. I should note that almost all of the people I have personally known from these two religions are trustworthy, intelligent, and a pleasure to meet. Despite what they are taught in their sacred texts.
19. Ira Levin, Boys from Brazil, Dell (1977)
20. There are many question to follow. How did He do it? Why is He masculine? Why did He do it? How do we know? That last question is especially relevant.
21. Guy J. Consolmagno, Brother Astronomer: Adventures of a Vatican Scientist, McGraw-Hill (2001)

Dear Lifeboat Foundation Family & Friends,

A few months back, my Aunt Charlotte wrote, wondering why I — a relentless searcher focused upon human evolution and long-term human survival strategy, had chosen to pursue a PhD in economics (Banking & Finance). I recently replied that, as it turns out, sound economic theory and global financial stability both play central roles in the quest for long-term human survival. In the fifth and final chapter of my recent Masters thesis, On the Problem of Sustainable Economic Development: A Game-Theoretical Solution, I argued (with considerable passion) that much of the blame for the economic crisis of 2008 (which is, essentially still upon us) may be attributed the adoption of Keynesian economics and the dismissal of the powerful counter-arguments tabled by his great rival, F.A. von Hayek. Despite the fact that they remained friends all the way until the very end, their theories are diametrically opposed at nearly every point. There was, however, at least one central point they agreed upon — indeed, Hayek was fond of quoting one of Keynes’ most famous maxims: “The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else” [1].

And, with this nontrivial problem and and the great Hayek vs. Keynes debate in mind, I’ll offer a preview-by-way-of-prelude with this invitation to turn a few pages of On the Problem of Modern Portfolio Theory: In Search of a Timeless & Universal Investment Perspective:

It is perhaps significant that Keynes hated to be addressed as “professor” (he never had that title). He was not primarily a scholar. He was a great amateur in many fields of knowledge and the arts; he had all the gifts of a great politician and a political pamphleteer; and he knew that “the ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is generally understood. Indeed the world is ruled by little else” [1]. And as he had a mind capable of recasting, in the intervals of his other occupations, the body of current economic theory, he more than any of his compeers had come to affect current thought. Whether it was he who was right or wrong, only the future will show. There are some who fear that if Lenin’s statement is correct that the best way to destroy the capitalist system is to debauch the currency, of which Keynes himself has reminded us [1], it will be largely due to Keynes’s influence if this prescription is followed.…

Perhaps the explanation of much that is puzzling about Keynes’s mind lies in the supreme confidence he had acquired in his power to play on public opinion as a supreme master plays on his instrument. He loved to pose in the role of a Cassandra whose warnings were not listened to. But, in fact, his early success in swinging round public opinion about the peace treaties had given him probably even an exaggerated estimate of his powers. I shall never forget one occasion – I believe the last time that I met him – when he startled me by an uncommonly frank expression of this. It was early in 1946, shortly after he had returned from the strenuous and exhausting negotiations in Washington on the British loan. Earlier in the evening he had fascinated the company by a detailed account of the American market for Elizabethan books which in any other man would have given the impression that he had devoted most of his time in the United States to that subject. Later a turn in the conversation made me ask him whether he was not concerned about what some of his disciples were making of his theories. After a not very complimentary remark about the persons concerned, he proceeded to reassure me by explaining that those ideas had been badly needed at the time he had launched them. He continued by indicating that I need not be alarmed; if they should ever become dangerous I could rely upon him again quickly to swing round public opinion – and he indicated by a quick movement of his hand how rapidly that would be done. But three months later he was dead [2].

As always, any and all comments, criticisms, thoughts, and suggestions are welcome!

Bidding you Godspeed,

Matt Funk, FLS, PhD Candidate, University of Malta, Dept. of Banking & Finance

[1]. KE YNES, J. (1920). The General Theory of Employment, Interest and Money (Palgrave Macmillan, London).

[2]. HAYEK, F. (1952). Review of R.F. Harrod’s ‘The Life of John Maynard Keynes’. J of Mod Hist 24:195–198.

Perhaps the most important lesson, which I have learned from Mises, was a lesson located outside economics itself. What Mises taught us in his writings, in his lectures, in his seminars, and in perhaps everything he said, was that economics—yes, and I mean sound economics, Austrian economics—is primordially, crucially important. Economics is not an intellectual game. Economics is deadly serious. The very future of mankind —of civilization—depends, in Mises’ view, upon widespread understanding of, and respect for, the principles of economics.

This is a lesson, which is located almost entirely outside economics proper. But all Mises’ work depended ultimately upon this tenet. Almost invariably, a scientist is motivated by values not strictly part of the science itself. The lust for fame, for material rewards—even the pure love of truth—these goals may possibly be fulfilled by scientific success, but are themselves not identified by science as worthwhile goals. What drove Mises, what accounted for his passionate dedication, his ability to calmly ignore the sneers of, and the isolation imposed by academic contemporaries, was his conviction that the survival of mankind depends on the development and dissemination of Austrian economics…

Austrian economics is not simply a matter of intellectual problem solving, like a challenging crossword puzzle, but literally a matter of the life or death of the human race.

–Israel M. Kirzner, Society for the Development of Austrian Economics Lifetime Achievement Award Acceptance Speech, 2006

Dear Lifeboat Foundation family & friends,

This 243-page thesis and this 16-page executive summary deliver a tenable, game-theoretical solution to this complex global dilemma:

Our narrative tables evolutionarily stable strategy for the problem of sustainable economic development on earth and other earth-like planets. In order to accomplish the task at hand with so few words, we hit the ground running with an exploration of Bertrand Russell’s conjecture that economic power is a derivative function of military power. Next we contextualize the formidable obstacle presented of teleological thinking. Third, we introduce Truly Non-cooperative Games – axioms and complimentary negotiation models developed to analyze a myriad of politico-economic problems, including the problem of sustainable economic development. Here we present The Principle of Relative Insularity, a unified theory of value which unites economics, astrophysics, and biology. Finally, we offer a synthetic narrative in which we explore several crucial logical implications that follow from our findings.

Those interested in background details and/or a deeper exploration of the logical implications that follow from this theoretical development may wish to pursue a few pages of an comprehensive, creative, and thoroughly exhaustive letter of introduction to this abridged synthesis: The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth.

Those interested in considering how this game-theoretical solution informs “evolutionarily stable” investment strategy may also wish to take in a brief overview of my PhD research: On the Problem of Modern Portfolio Theory: In Search of a Timeless & Universal Investment Perspective.

Please feel free to post all thoughts, comments, criticisms, and suggestions.

Thanks for reading!

Sincerely,

Matt Funk, FLS, BSc, MA, MFA, PhD Candidate, University of Malta, Department of Banking & Finance

PS: The author would like to thank the Lifeboat Foundation, Linnean Society of London, Property and Environment Research Center, Society for Range Management, Professors Kurial, Nagarajan, Baldacchino, Fielding, Falzon (University of Malta), Lockwood (University of Wyoming), MacKinnon (Memorial University), Sloan (Lancaster University), McKenna (Notre Dame), Schlicht (Ludwig-Maximilians- Universität München) and his dedicated team at MPRA, author & astronomer Jeff Kanipe, Dr Willard S. Boyle, Dr John Harris, fellow students, family, and friends for their priceless guidance, support, and encouragement. He also sends out a very special thanks to Professors Frey (Universität Zürich), Selten (Universität Bonn), and Nash (Princeton University) for their originality, independence, and inspiration.

A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

Posted in asteroid/comet impacts, biological, complex systems, cosmology, defense, economics, existential risks, geopolitics, habitats, human trajectories, lifeboat, military, philosophy, sustainabilityTagged , , , , , , , , , , , | 2 Comments on A (Relatively) Brief Introduction to The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth

(NOTE: Selecting the “Switch to White” button on the upper right-hand corner of the screen may ease reading this text).

“Who are you?” A simple question sometimes requires a complex answer. When a Homeric hero is asked who he is.., his answer consists of more than just his name; he provides a list of his ancestors. The history of his family is an essential constituent of his identity. When the city of Aphrodisias… decided to honor a prominent citizen with a public funeral…, the decree in his honor identified him in the following manner:

Hermogenes, son of Hephaistion, the so-called Theodotos, one of the first and most illustrious citizens, a man who has as his ancestors men among the greatest and among those who built together the community and have lived in virtue, love of glory, many promises of benefactions, and the most beautiful deeds for the fatherland; a man who has been himself good and virtuous, a lover of the fatherland, a constructor, a benefactor of the polis, and a savior.
– Angelos Chaniotis, In Search of an Identity: European Discourses and Ancient Paradigms, 2010

I realize many may not have the time to read all of this post — let alone the treatise it introduces — so for those with just a few minutes to spare, consider abandoning the remainder of this introduction and spending a few moments with a brief narrative which distills the very essence of the problem at hand: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

But for those with the time and inclinations for long and windy paths through the woods, please allow me to introduce myself: I was born and raised in Kentland, Indiana, a few blocks from the train station where my great-great grandfather, Barney Funk, arrived from Germany, on Christmas day of 1859. I completed a BSc in Entrepreneurship and an MFA in film at USC, and an MA in Island Studies at UPEI. I am a naturalist, Fellow of The Linnean Society of London, PhD candidate in economics at the University of Malta, hunter & fisherman, NRA member, protective father, and devoted husband with a long, long line of illustrious ancestors, a loving mother & father, extraordinary brothers & sister, wonderful wife, beautiful son & daughter, courageous cousins, and fantastic aunts, uncles, in-laws, colleagues, and fabulous friends!

Thus my answer to the simple question, “Who are you?” requires a somewhat complex answer as well.

But time is short and I am well-positioned to simplify because all of the hats I wear fall under a single umbrella: I am a friend of the Lifeboat Foundation (where I am honoured to serve on the Human Trajectories, Economics, Finance, and Diplomacy Advisory Boards), a foundation “dedicated to encouraging scientific advancements while helping humanity survive existential risks.”

Almost everything I do – including the roles, associations, and relationships noted above, supports this mission.

It’s been nearly a year since Eric generously publish Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth, and since that time I have been fortunate to receive many interesting and insightful emails packed full of comments and questions; thus I would like to take this opportunity to introduce this work – which represents three years of research.

Those interested in taking the plunge and downloading the file above may note that this discourse

tables an evolutionarily stable strategy for the problem of sustainable economic development – on islands and island-like planets (such as Earth), alike, and thus this treatise yields, in essence, a long-term survival guide for the inhabitants of Earth.

Thus you may expect a rather long, complex discourse.

This is indeed what you may find – a 121 page synthesis, including this 1,233 page Digital Supplement.

As Nassim Nicholas Taleb remarked in Fooled by Randomness:

I do not dispute that arguments should be simplified to their maximum potential; but people often confuse complex ideas that cannot be simplified into a media-friendly statement as symptomatic of a confused mind. MBAs learn the concept of clarity and simplicity—the five-minute manager take on things. The concept may apply to the business plan for a fertilizer plant, but not to highly probabilistic arguments—which is the reason I have anecdotal evidence in my business that MBAs tend to blow up in financial markets, as they are trained to simplify matters a couple of steps beyond their requirement.

But there is indeed a short-cut — in fact, there are at least two short-cuts.

First, perhaps the most direct pleasant approach to the summit is a condensed, 237 page thesis: On the Problem of Sustainable Economic Development: A Game-Theoretical Solution.

But for those pressed for time and/or those merely interested in sampling a few short, foundational works (perhaps to see if you’re interested in following me down the rabbit hole), the entire theoretical content of this 1,354-page report (report + digital supplement) may be gleamed from 5 of the 23 works included within the digital supplement. These working papers and publications are also freely available from the links below – I’ll briefly relate how these key puzzle pieces fit together:

The first publication offers a 13-page over-view of our “problem situation”: On the Origin of Mass Extinctions: Darwin’s Nontrivial Error.

Second is a 21-page game-theoretical development which frames the problem of sustainable economic development in the light of evolution – perhaps 70% of our theoretical content lies here: On the Truly Noncooperative Game of Life on Earth: In Search of the Unity of Nature & Evolutionary Stable Strategy.

Next comes a 113-page gem which attempts to capture the spirit and essence of comparative island studies, a course charted by Alexander von Humboldt and followed by every great naturalist since (of which, more to follow). This is an open letter to the Fellows of the Linnean Society of London, a comparative study of two, diametrically opposed economic development plans, both put into action in that fateful year of 1968 — one on Prince Edward Island, the other on Mustique. This exhaustive work also holds the remainder of the foundation for our complete solution to this global dilemma – and best of all, those fairly well-versed in game theory need not read it all, the core solution may be quickly digested on pages 25–51:
On the Truly Noncooperative Game of Island Life: Introducing a Unified Theory of Value & Evolutionary Stable ‘Island’ Economic Development Strategy.

Fourth comes an optional, 19-page exploration that presents a theoretical development also derived and illuminated through comparative island study (including a mini-discourse on methods). UPEI Island Studies Programme readers with the time and inclination for only one relatively short piece, this may be the one to explore. And, despite the fact that this work supports the theoretical content linked above, it’s optional because there’s nothing new here – in fact, these truths have been well known and meticulously documented for over 1,000 years – but it may prove to be a worthwhile, engaging, and interesting read nonetheless, because these truths have become so unfashionable that they’ve slipped back into relative obscurity: On the Problem of Economic Power: Lessons from the Natural History of the Hawaiian Archipelago.

And finally I’ll highlight another optional, brief communique – although this argument may be hopelessly compressed, here, in 3 pages, is my entire solution:
Truly Non-Cooperative Games: A Unified Theory.

Yes, Lifeboat Foundation family and friends, you may wish to pause to review the abstracts to these core, foundational works, or you may even wish to review them completely and put the puzzle pieces together yourself (the pages linked above total 169 – or a mere 82 pages if you stick to the core excerpt highlighted in my Linnean Letter), but, as the great American novelist Henry Miller remarked:

In this age, which believes that there is a short cut to everything, the greatest lesson to be learned is that the most difficult way is, in the long run, the easiest.

Why?

That’s yet another great, simple question that may require several complex answers, but I’ll give you three:

#1). First and foremost, because explaining is a difficult art.

As Richard Dawkins duly noted:

Explaining is a difficult art. You can explain something so that your reader understands the words; and you can explain something so that the reader feels it in the marrow of his bones. To do the latter, it sometimes isn’t enough to lay the evidence before the reader in a dispassionate way. You have to become an advocate and use the tricks of the advocate’s trade.

Of course much of this depends upon the reader – naturally some readers may find that less (explanation) is more. Others, however, may find benefit from reading even more (more, that is, than my report and the digital supplement). You may find suggested preliminary and complimentary texts in the SELECTED BIBLIOGRAPHY (below). The report itself includes these and many more. In short, the more familiar readers may be with some or all of these works, the less explaining they may require.

#2). No matter how much explaining you do, it’s actually never enough, and, as Abraham Lincoln wisely noted at Gettysburg, the work is never done. For more one this important point, let’s consider the words of Karl Popper:

When we propose a theory, or try to understand a theory, we also propose, or try to understand, its logical implications; that is, all those statements which follow from it. But this… is a hopeless task: there is an infinity of unforeseeable nontrivial statements belonging to the informative content of any theory, and an exactly corresponding infinity of statements belonging to its logical content. We can therefore never know or understand all the implications of any theory, or its full significance.
This, I think, is a surprising result as far as it concerns logical content; though for informative content it turns out to be rather natural…. It shows, among other things, that understanding a theory is always an infinite task, and that theories can in principle be understood better and better. It also shows that, if we wish to understand a theory better, what we have to do first is to discover its logical relation to those existing problems and existing theories which constitute what we may call the ‘problem situation’.
Admittedly, we also try to look ahead: we try to discover new problems raised by our theory. But the task is infinite, and can never be completed.

In fact, when it comes right down to it, my treatise – in fact, my entire body of research, is, in reality, merely an exploration of the “infinity of unforeseeable nontrivial statements belonging to the informative content” of the theory for which Sir Karl Popper is famous: his solution to David Hume’s problem of induction (of which you’ll hear a great deal if you brave the perilous seas of thought in the works introduced and linked herewith).

#3). Okay, this is a tricky one, but here it goes: Fine, a reasonable skeptic may counter, I get it, it’s hard to explain and there’s a lot of explaining to do – but if 100% of the theoretical content may be extracted from less than 200 pages, then doesn’t that mean you could cut about 1,000 pages?

My answer?

Maybe.

But then again, maybe not.

The reality of the situation is this: neither I nor anyone else can say for sure – this is known as the mind-body problem. In essence, given the mind-body problem, not only am I unable to know exactly how to explain something I know, moreover, I’m not even able to know how it is that I know what I know. I’m merely able to guess. Although this brief introduction is not the proper time nor place to explore the contents of this iteration of Pandora’s Box, those interested in a thorough exploration of this particular problem situation would be well-served with F.A. von Hayek’s The Sensory Order: An Inquiry into the Foundations of Theoretical Psychology (1952). But, in short, the bulk of the Digital Supplement and much of the report itself is merely an attempt to combat the mind-body problem – an attempt to put down as much of the history (and methodology) of this theoretical development as possible. As Descartes remarked at the outset of a treatise on scientific method:

This Tract is put forth merely as a history, or, if you will, as a tale, in which, amid some examples worthy of imitation, there will be found, perhaps, as many more which it were advisable not to follow, I hope it will prove useful to some without being hurtful to any, and that my openness will find some favor with all.

Perhaps you may grasp my theoretical development – but perhaps you may grasp it in a matter by which I did not intend for you to grasp it – perhaps I had stumbled upon a truth in another work within my digital supplement that may make it all clear. Or, perhaps I’ve got it all wrong, and perhaps you – by following in my footsteps through the historical course of this theoretical development (faithfully chronicled in the digital supplement) – may be able to help show me my error (and then, of course we may both rejoice); Malthus felt likewise:

If [the author] should succeed in drawing the attention of more able men to what he conceives to be the principal difficulty in… society and should, in consequence, see this difficulty removed, even in theory, he will gladly retract his present opinions and rejoice in a conviction of his error.

Anticipating another point regarding style: This report is very, very unusual insofar as style is concerned. It’s personal, highly opinionated, and indulges artistic license at almost every turn in the road. In fact, you may also find this narrative a touch artistic – yet it’s all true. As Norman Maclean remarked in A River Runs Trough It, “You like to tell true stories, don’t you?’ he asked, and I answered, ‘Yes, I like to tell stories that are true.’”

I like to tell stories that are true, too, and if you like to read them, then this epic journey of discovery may be for you. I speak to this point at length, but, in short, I submit that there is a method to the madness (in fact, the entire report may also be regarded as an unusual discourse on method).

Why have I synthesized this important theoretical development in an artistic narrative? In part, because Bruno Frey (2002) clearly stated why that’s the way it should be.

But I also did so in hopes that it may help readers grasp what it’s really all about; as the great Russian-American novelist Ayn Rand detailed:

Man’s profound need of art lies in the fact that his cognitive faculty is conceptual, i.e., that he acquires knowledge by means of abstractions, and needs the power to bring his widest metaphysical abstractions into his immediate, perceptual awareness. Art fulfills this need: by means of a selective re-creation, it concretizes man’s fundamental view of himself and of existence. It tells man, in effect, which aspects of his experience are to be regarded as essential, significant, important. In this sense, art teaches man how to use his consciousness.

Speaking of scientific method: I have suggested that my curiously creative narrative may offer some insight into the non-existent subject of scientific method — so please download for much more along these lines — but I want to offer an important note, especially for colleagues, friends, students, and faculty at UPEI: I sat in on a lecture last winter where I was surprised to learn that “island studies” had been recently invented by Canada research chair – thus I thought perhaps I should offer a correction and suggest where island studies really began:

Although it is somewhat well known that Darwin and Wallace pieced the theory of evolution together independently, yet at roughly the same time – Wallace, during his travels through the Malay archipelago, and Darwin, during his grand circumnavigation of the island of Earth onboard the Beagle (yes, the Galapagos archipelago played a key role, but perhaps not as important as has been suggested in the past). But what is not as commonly know is that both Darwin and Wallace had the same instructor in the art of comparative island studies. Indeed, Darwin and Wallace both traveled with identical copies of the same, treasured book: Alexander von Humboldt’s Personal Narrative of Travels to the Equinoctial Regions of the New Continent. Both also testified to the fundamental role von Humboldt played by inspiring their travels and, moreover, developing of their theories.

Thus, I submit that island studies may have been born with the publication of this monumental work in 1814; or perhaps, as Berry (2009) chronicled in Hooker and Islands (see SELECTED BIBLIOGRAPHY, below), it may have been Thomas Pennant or Georg Forster:

George Low of Orkney provided, together with Gilbert White, a significant part of the biological information used by pioneering travel writer Thomas Pennant, who was a correspondent of both Joseph Banks and Linnaeus [Pennant dedicated his Tour in Scotland and Voyage to the Hebrides (1774–76) to Banks and published Banks’s description of Staffa, which excited much interest in islands; Banks had travelled with James Cook and visited many islands; Georg Forster, who followed Banks as naturalist on Cook’s second voyage inspired Alexander Humboldt, who in turn Darwin treated as a model.

But whomever it may have been — or whomever you may ultimately choose to follow — Humboldt certainly towers over the pages of natural history, and Gerard Helferich’s Humboldt’s Cosmo’s: Alexander von Humboldt and the Latin American Journey that Changed the WayWe See the World (2004) tells Humboldt’s story incredibly well. This treasure also happens to capture the essence of Humboldt’s method, Darwin’s method, Wallace’s method, Mayr’s method, Gould’s method, and it most certainly lays out the map I have attempted to follow:

Instead of trying to pigeonhole the natural world into prescribed classification, Kant had argued, scientists should work to discover the underlying scientific principles at work, since only those general tenets could fully explain the myriad natural phenomena. Thus Kant had extended the unifying tradition of Thales, Newton, Descartes, et al.… Humboldt agreed with Kant that a different approach to science was needed, one that could account for the harmony of nature… The scientific community, despite prodigious discoveries, seemed to have forgotten the Greek vision of nature as an integrated whole.… ‘Rather than discover new, isolated facts I preferred linking already known ones together,’ Humboldt later wrote. Science could only advance ‘by bringing together all the phenomena and creations which the earth has to offer. In this great sequence of cause and effect, nothing can be considered in isolation.’ It is in this underlying connectedness that the genuine mysteries of nature would be found. This was the deeper truth that Humboldt planned to lay bare – a new paradigm from a New World. For only through travel, despite its accompanying risks, could a naturalist make the diverse observations necessary to advance science beyond dogma and conjecture. Although nature operated as a cohesive system, the world was also organized into distinct regions whose unique character was the result of all the interlocking forces at work in that particular place. To uncover the unity of nature, one must study the various regions of the world, comparing and contrasting the natural processes at work in each. The scientist, in other words, must become an explorer.

With these beautiful words in mind and the spirit of adventure in the heart, I thank you for listening to this long story about an even longer story, please allow me to be your guide through an epic adventure.

But for now, in closing, I’d like to briefly return to the topic at hand: human survival on Earth.

A few days ago, Frenchman Alain Robert climbed the world’s tallest building – Burj Khalifa – in Dubai.

After the six hour climb, Robert told Gulf News, “My biggest fear is to waste my time on earth.”

I certainly share Robert’s fear – Alexander von Humboldt, Darwin, and Wallace did, too, by the way.

But then Robert added, “To live, we don’t need much, just a roof over our heads some food and drink and that’s it … everything else is superficial.”

I’m afraid that’s where Robert and I part ways – and if you would kindly join me on a journey through The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth – I would love to explain why Robert’s assertion is simply not true.

Please feel free to post comments or contact me with any thoughts, comments, questions, or suggestions.

MWF
Charlottetown, Prince Edward Island

PS: My report suggests many preliminary and complimentary readings – but I’ve revisited this topic with the aim of producing a selected bibliography of the most condensed and readily accessible (i.e, freely available online) works which may help prepare the reader for my report and the foundational theoretical discourses noted and linked above. Most are short papers, but a few great books and dandy dissertations may be necessary as well!

SELECTED BIBLIOGRAPHY

BERRY, R. (2009). Hooker and islands. Bio Journal Linn Soc 96:462–481.

DARWIN, C., WALLACE, A. (1858). On the Tendency of Species to form Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection. Proc Linn Soc 3:45–62.

DARWIN, C., et. al. (1849). A Manual of Scientific Enquiry; Prepared for the use of Her Majesty’s Navy : and Adapted for Travellers in General (Murray, London).

DOBZHANSK Y, T. (1973). Nothing in biology makes sense except in light of evolution. Amer Biol Teacher 35:125- 129.

EINSTEIN, A. (1920). Relativity: The Special and General Theory (Methuen & Co., London).

FIELDING, R. (2010). Artisanal Whaling in the Atlantic: A Comparative Study of Culture, Conflict, and Conservation in St. Vincent and the Faroe Islands. A PhD dissertation (Louisiana State University, Baton Rouge).

FREY, B. (2002). Publishing as Prostitution? Choosing Between One‘s Own Ideas and Academic Failure. Pub Choice 116:205–223.

FUNK, M. (2010a). Truly Non-Cooperative Games: A Unified Theory. MPRA 22775:1–3.

FUNK, M. (2008). On the Truly Noncooperative Game of Life on Earth: In Search of the Unity of Nature & Evolutionary Stable Strategy. MPRA 17280:1–21.

FUNK, M. (2009a). On the Origin of Mass Extinctions: Darwin’s Nontrivial Error. MPRA 20193:1–13.

FUNK, M. (2009b). On the Truly Noncooperative Game of Island Life: Introducing a Unified Theory of Value & Evolutionary Stable ‘Island’ Economic Development Strategy. MPRA 19049:1–113.

FUNK, M. (2009c). On the Problem of Economic Power: Lessons from the Natural History of the Hawaiian Archipelago. MPRA 19371:1–19.

HELFERICH, G. (2004). Humboldt’s Cosmo’s: Alexander von Humboldt and the Latin American Journey that Changed the Way We See the World (Gotham Books, New York).

HOLT, C., ROTH, A. (2004). The Nash equilibrium: A perspective. Proc Natl Acad Sci USA 101:3999–4000.

HAYEK, F. (1974). The Pretense of Knowledge. Nobel Memorial Lecture, 11 December 1974. 1989 reprint. Amer Econ Rev 79:3–7.

HUMBOLDT, A., BONPLAND, A. (1814). Personal Narrative of Travels to the Equinoctial Regions of the New Continent (Longman, London).

KANIPE, J. (2009). The Cosmic Connection: How Astronomical Events Impact Life on Earth (Prometheus, Amherst).

MAYNARD SMITH, J. (1982). Evolution and the Theory of Games (Cambridge Univ, New York).

MAYR, E. (2001). What Evolution Is (Basic Books, New York).

NASH, J., et., al. (1994). The Work of John Nash in Game Theory. Prize Seminar, December 8, 1994 (Sveriges Riksbank, Stockholm).

NASH, J. (1951). Non-Cooperative Games. Ann Math 54:286–295.

NASH, J. (1950). Two-Person Cooperative Games. RAND P-172 (RAND, Santa Monica).

POPPER, K. (1999). All life is Problem Solving (Routledge, London).

POPPER, K. (1992). In Search of a Better World (Routledge, London).

ROGERS, D., EHRLICH, P. (2008). Natural selection and cultural rates of change. Proc Natl Acad Sci USA 105:3416 −3420.

SCHWEICKART, R., et. al. (2006). Threat Mitigation: The Gravity Tractor. NASA NEO Workshop, Vail, Colorado.

SCHWEICKART, R., et. al. (2006). Threat Mitigation: The Asteroid Tugboat. NASA NEO Workshop, Vail, Colorado.

STIGLER, G. (1982). Process and Progress of Economics. J of Pol Econ 91:529–545.

TALEB, N. (2001). Fooled by Randomness (Texere, New York).

WEIBULL, J. (1998). WHAT HAVE WE LEARNED FROM EVOLUTIONARY GAME THEORY SO FAR? (Stockholm School of Economics, Stockholm).

WALLACE, A. (1855). On the Law Which has Regulated the Introduction of New Species. Ann of Nat History 16:184–195.

California Dreams Video 1 from IFTF on Vimeo.

INSTITUTE FOR THE FUTURE ANNOUNCES CALIFORNIA DREAMS:
A CALL FOR ENTRIES ON IMAGINING LIFE IN CALIFORNIA IN 2020

Put yourself in the future and show us what a day in your life looks like. Will California keep growing, start conserving, reinvent itself, or collapse? How are you living in this new world? Anyone can enter,anyone can vote; anyone can change the future of California!

California has always been a frontier—a place of change and innovation, reinventing itself time and again. The question is, can California do it again? Today the state is facing some of its toughest challenges. Launching today, IFTF’s California Dreams is a competition with an urgent challenge to recruit citizen visions of the future of California—ideas for what it will be like to live in the state in the next decade—to start creating a new California dream.

California Dreams calls upon the public look 3–10 years into the future and tell a story about a single day in their own life. Videos, graphical entries, and stories will be accepted until January 15, 2011. Up to five winners will be flown to Palo Alto, California in March to present their ideas and be connected to other innovative thinkers to help bring these ideas to life. The grand prize winner will receive the $3,000 IFTF Roy Amara Prize for Participatory Foresight.

“We want to engage Californians in shaping their lives and communities” said Marina Gorbis, Executive Director of IFTF. “The California Dreams contest will outline the kinds of questions and dilemmas we need to be analyzing, and provoke people to ask deep questions.”

Entries may come from anyone anywhere and can include, but are not limited to, the following: Urban farming, online games replacing school, a fast food tax, smaller, sustainable housing, rise in immigrant entrepreneurs, mass migration out of state. Participants are challenged to use IFTF’s California Dreaming map as inspiration, and picture themselves in the next decade, whether it be a future of growth, constraint, transformation, or collapse.

The grand prize, called the Roy Amara Prize, is named for IFTF’s long-time president Roy Amara (1925−2000) and is part of a larger program of social impact projects at IFTF honoring his legacy, known as The Roy Amara Fund for Participatory Foresight, the Fund uses participatory tools to translate foresight research into concrete actions that address future social challenges.

PANEL OF COMPETITION JUDGES

Gina Bianchini, Entrepreneur in Residence, Andreessen Horowitz

Alexandra Carmichael, Research Affiliate, Institute for the Future, Co-Founder, CureTogether, Director, Quantified Self

Bill Cooper, The Urban Water Research Center, UC Irvine

Poppy Davis, Executive Director, EcoFarm

Jesse Dylan, Founder of FreeForm, Founder of Lybba

Marina Gorbis, Executive Director, Institute for the Future

David Hayes-Bautista, Professor of Medicine and Health Services,UCLA School of Public Health

Jessica Jackley, CEO, ProFounder

Xeni Jardin, Partner, Boing Boing, Executive Producer, Boing Boing Video

Jane McGonigal, Director of Game Research and Development, Institute for the Future

Rachel Pike, Clean Tech Analyst, Draper Fisher Jurvetson

Howard Rheingold, Visiting Professor, Stanford / Berkeley, and theInstitute of Creative Technologies

Tiffany Shlain, Founder, The Webby Awards
Co-founder International Academy of Digital Arts and Sciences

Larry Smarr
Founding Director, California Institute for Telecommunications and Information Technology (Calit2), Professor, UC San Diego

DETAILS

WHAT: An online competition for visions of the future of California in the next 10 years, along one of four future paths: growth, constraint, transformation, or collapse. Anyone can enter, anyone can vote, anyone can change the future of California.

WHEN: Launch – October 26, 2010
Deadline for entries — January 15, 2011
Winners announced — February 23, 2011
Winners Celebration — 6 – 9 pm March 11, 2011 — open to the public

WHERE: http://californiadreams.org

For more information on the California Dreaming map or to download the pdf, click here.

Kevin Kelly concluded a chapter in his new book What Technology Wants with the declaration that if you hate technology, you basically hate yourself.

The rationale is twofold:

1. As many have observed before, technology–and Kelly’s superset “technium”–is in many ways the natural successor to biological evolution. In other words, human change is primarily through various symbiotic and feedback-looped systems that comprise human culture.

2. It all started with biology, but humans throughout their entire history have defined and been defined by their tools and information technologies. I wrote an essay a few months ago called “What Bruce Campbell Taught Me About Robotics” concerning human co-evolution with tools and the mind’s plastic self-models. And of course there’s the whole co-evolution with or transition to language-based societies.

So if the premise that human culture is a result of taking the path of technologies is true, then to reject technology as a whole would be reject human culture as it has always been. If the premise that our biological framework is a result of a back-and-forth relationship with tools and/or information, then you have another reason to say that hating technology is hating yourself (assuming you are human).

In his book, Kelly argues against the noble savage concept. Even though there are many useless implementations of technology, the tech that is good is extremely good and all humans adopt them when they can. Some examples Kelly provides are telephones, antibiotics and other medicines, and…chainsaws. Low-tech villagers continue to swarm to slums of higher-tech cities, not because they are forced, but because they want their children to have better opportunities.

So is it a straw man that actually hates technology? Certainly people hate certain implementations of technology. Certainly it is ok, and perhaps needed more than ever, to reject useless technology artifacts. I think one place where you can definitely find some technology haters are the ones afraid of obviously transformative technologies, in other words the ones that purposely and radically alter humans. And they are only “transformative” in an anachronistic sense–e.g., if you compare two different time periods in history, you can see drastic differences.

Also, although perhaps not outright hate in most cases, there are many who have been infected by the meme that artificial creatures such as robots and/or super-smart computers (and/or super-smart networks of computers) present a competition to humans as they exist now. This meme is perhaps more dangerous than any computer could be because it tries to divorce humans from the technium.

Image credit: whokilledbambi