Toggle light / dark theme

About

DIYbio is an organization that aims to help make biology a worthwhile pursuit for citizen scientists, amateur biologists, and DIY biological engineers who value openness and safety. This will require mechanisms for amateurs to increase their knowledge and skills, access to a community of experts, the development of a code of ethics, responsible oversight, and leadership on issues that are unique to doing biology outside of traditional professional settings.

What is DIYbio in 4 minutes?

Get Involved

You can read about current events and developments in the DIYbio community by reading or subscribing to the blog.

Get in contact or get involved through discussions on our mailing list, or by attending or hosting a local DIYbio meetup.

The mailing list is the best way to find out what’s happening with DIYbio right now. There is also a low-traffic announce list.

Find out about our featured projects, including our plans for public wetlabs, global FlashLab experiments, and our innovation of next-gen lab equipment on the Projects page.

Jetfuel powerpack, armour… shoulder turret?

Free whitepaper – Data center projects: standardized process

US weaponry globocorp Lockheed is pleased to announce the unveiling of its newly-acquired powered exoskeleton intended to confer superhuman strength and endurance upon US soldiers.

Needless to say, corporate promo vid of the Human Universal Load Carrier (HULC™) is available:

The exoskeleton is based on a design from Berkeley Bionics of California, but Lockheed say they have brought significant pimpage to the basic HULC. The enhanced version is now on show at the Association of the United States’ Army Winter Symposium in Florida.

“With our enhancements to the HULC system, Soldiers will be able to carry loads up to 200 pounds with minimal effort,” according to Lockheed’s Rich Russell.

From the vid, the HULC certainly seems a step forward on Raytheon’s rival XOS mechwarrior suit, which at last report still trails an inconvenient power cable to the nearest wall socket.

Not so the HULC; four pounds of lithium polymer batteries will run the exoskeleton for an hour walking at 3mph, according to Lockheed. Speed marching at up to 7mph reduces this somewhat; a battery-draining “burst” at 10mph is the maximum speed.

The user can hump 200lb with relative ease while marching in a HULC, however, well in excess of even the heaviest combat loads normally carried by modern infantry. There’d be scope to carry a few spare batteries. Even if the machine runs out of juice, Lockheed claims that its reinforcement and shock absorption still helps with load carrying rather than hindering.

There are various optional extras, too. The HULC can be fitted with armour plating, heating or cooling systems, sensors and “other custom attachments”. We particularly liked that last one: our personal request would be a powered gun or missile mount of some kind above the shoulder, linked to a helmet or monocle laser sight.

One does note that remote-controlled gun mounts weighing as little as 55lb are available, able to handle various kinds of normally tripod- or bipod-mounted heavy weapons.

You’d need more power, but that’s on offer. According to the Lockheed spec sheet (pdf) there’s an extended-endurance HULC fitted with a “silent” generator running on JP8 jet fuel. A tankful will run this suit for three days, marching eight hours per day — though presumably at the cost of some payload.

Doubtless other power options could be developed: Lockheed says the HULC needs 250 watts on average.

It’s important to note that the HULC is basically a legs and body system only: there’s no enhancement to the user’s arms, though an over-shoulder frame can be fitted allowing a wearer to hoist heavy objects such as artilery shells with the aid of a lifting strop.

The HULC may not be quite ready for prime time yet. But the military exoskeleton as a concept does seem to be getting to the stage of usefulness, at least in niche situations for specific jobs.

The BigDog petrol packmule, an alternative strategy for helping footsoldiers carry their increasingly heavy loads, may now have a serious rival. ®

Jacob Haqq-Misra and Seth D. Baum (2009). The Sustainability Solution to the Fermi Paradox. Journal of the British Interplanetary Society 62: 47–51.

Background: The Fermi Paradox
According to a simple but powerful inference introduced by physicist Enrico Fermi in 1950, we should expect to observe numerous extraterrestrial civilizations throughout our galaxy. Given the old age of our galaxy, Fermi postulated that if the evolution of life and subsequent development of intelligence is common, then extraterrestrial intelligence (ETI) could have colonized the Milky Way several times over by now. Thus, the paradox is: if ETI should be so widespread, where are they? Many solutions have been proposed to account for our absence of ETI observation. Perhaps the occurrence of life or intelligence is rare in the galaxy. Perhaps ETI inevitably destroy themselves soon after developing advanced technology. Perhaps ETI are keeping Earth as a zoo!

The ‘Sustainability Solution’
The Haqq-Misra & Baum paper presents a definitive statement on a plausible but often overlooked solution to the Fermi paradox, which the authors name the “Sustainability Solution”. The Sustainability Solution states: the absence of ETI observation can be explained by the possibility that exponential or other faster-growth is not a sustainable development pattern for intelligent civilizations. Exponential growth is implicit in Fermi’s claim that ETI could quickly expand through the galaxy, an assumption based on observations of human expansion on Earth. However, as we are now learning all too well, our exponential expansion frequently proves unsustainable as we reach the limits of available resources. Likewise, because all civilizations throughout the universe may have limited resources, it is possible that all civilizations face similar issues of sustainability. In other words, unsustainably growing civilizations may inevitably collapse. This possibility is the essence of the Sustainability Solution.

Implications for the Search for Extraterrestrial Intelligence (SETI)
If the Sustainability Solution is true, then we may never observe a galactic-scale ETI civilization, for such an empire would have grown and collapsed too quickly for us to notice. SETI efforts should therefore focus on ETI that grow within the limits of their carrying capacity and thereby avoid collapse. These slower-growth ETI may possess the technological capacity for both radio broadcasts and remote interstellar exploration. Thus, SETI may be more successful if it is expanded to include a search of our Solar System for small, unmanned ETI satellites.

Implications for Human Civilization Management
Does the Sustainability Solution mean that humanity must live sustainably in order to avoid collapse? Not necessarily. Humanity could collapse even if it lives sustainably—for example, if it collides with a large asteroid. Alternatively, humanity may be able to grow rapidly for much longer—for example, until we have colonized the entire Solar System. Finally, the Sustainability Solution is only one of several possible solutions to the Fermi paradox, so it is not necessarily the case that all civilizations must grow sustainably or else face collapse. However, the possibility of the Sustainability Solution makes it more likely that humanity must live more sustainably if it is to avoid collapse.

Crossposted from the blog of Starship Reckless

Note: Like anyone who’s breathing, I have been tracking the Phoenix Lander. So I thought this might be a good moment to share a personal memory of one of its ancestors. That one did not survive to fulfill its mission, but the dream stayed alive. What I said then is even more true today, almost a decade later. The Greek version of this article was published in the largest Greek daily, Eleftherotypia (Free Press).

Prometheus

Prometheus Stealing Fire by André Durand (cropped)

It’s slightly cloudy — unusual for sunny Florida. The ocean-scented air is alive with birds: gulls, pelicans, hawks. On a wooden platform, a group of people of all ages and colors is squinting fixedly at a point on the horizon about two kilometers away, where a gantry holds a slim rocket that balances a tiny load on its nose. A level voice announces from the loudspeakers: “The T minus ten holding period is over. We’re going forward.”

The people break into wild cheers, then fall eerily silent. Curious children are shushed and told to look there, there; final adjustments are made to cameras and binoculars. The minus ten holding period is the last chance to abort. The weather was such that until this moment the decision to launch could change.

Like heartbeats, the announcements come. “T minus five… minus three… minus one… T minus thirty seconds… minus twenty seconds… minus ten seconds… Now you can hear a pin drop. “Nine… eight.. seven… six… five… four.… three… two…” All the spectators shiver, holding their breath.

“Liftoff!”

A fiery flower unfurls on the horizon. From within it emerges a dark blue arrow that pierces the sky, followed by a cloud of white smoke. The ground shakes from the aftershocks. Seconds later, the sonic boom reaches the group. Many of its members are wiping tears without making any effort to hide them – despite the Anglosaxon tradition that discourages public displays of emotion.

And so, in front of my eyes, accompanied by tears and cheers, loaded with blessings and expectations, on January 3, 1999, the Polar Lander left for Mars. After a year of travel, it will touch down on the South Pole of Mars and search for subterranean water.

Why is this mission important? Today Mars is bone-dry, but its surface features betray that it enjoyed liquid water in the past – gullies, wadis and coasts of now-vanished seas are clearly visible in its photos.

Wherever there’s water, there is life. Martian life, if it exists, is almost certainly at the bacterial stage. But if we find it – or just its petrified remains – this will give us the very first proof that we are not alone, that our Universe, vast as it is, may perhaps contain companions.

Such a discovery will overshadow even the upheavals brought about by Copernicus and Darwin. It will break our eternal isolation and force us to completely revise our ideas of the universe and our place in it. The existence of extraterrestrial life will make us understand that we occupy no special place in the universe, that we are observers or fellow travelers and not, by the grace of any god, lords of creation. And it will force us to remember yet again that humanity is a single entity, traveling on a lone ship that makes it way through an indifferent sea.

For a bearer of such a heavy literal and symbolic load, the Polar Lander is miniscule. The size of a small fridge, jam-packed with instruments, it resembles a beetle, with the fragile solar panels standing in for wings. Among other things, it carries a microphone. For the first time, we will hear the sounds of the winds on another planet.

The inventiveness required to put together a space mission is almost unbelievable. As an example, the two tiny instruments that will detect the potential underground water and send the results to the orbiters must achieve the following: land unscathed after enduring the heat of atmospheric entry; pierce like missiles a thick layer of ice without harming their electronic circuits; enter the ground in the correct orientation without rudders, parachutes, engines or further instructions from Earth; and last but not least, do exact measurements with fragile instruments the size of a small human finger. Such demands are the order of the day for NASA’s technical personnel.

The morning before the launch, the engineers and scientists who achieved these miracles explained to us the goals of the mission and the details of the craft and its instruments. All were trembling with tension and fatigue, but their eyes burned with their vision.

These men and women, whose names will never become known or celebrated like those of the astronauts, already dedicated four years of their lives to this mission – and will give as many in the future, analyzing the information sent by the spacecraft. Like the artisans who built Stonehenge, the Pyramids, Aghia Sofia, the Taj Mahal, these people grow old in obscurity, with their only reward the knowledge that will be added to the annals of the species… and with their sole but immense privilege to be the first who glimpse the New Worlds.

Because, in the end, that is the real mission. Exploration of space is the large collective effort of this era that will change all our lives. Not only because we may discover alien life. Closer to home, this exploration is the guarantee for our continuation.

Earth is truly the Garden of Eden, but its magnanimity has spoiled us. Now, having grown used to the caresses of a planet ideal for our needs as well as the luxuries of advanced technology, we have almost exhausted the finite resources of our paradise. With the pressures of the human population, the rest of the biosphere is contracting daily and the quality of life is dwindling for all except the privileged.

It is true that we have not solved our problems here, and inevitably we will take them with us wherever we go. However, if we wait till the last moment to launch the ships with the seeds of terrestrial life, the likelihood of finding another welcoming harbor before we suck our parent planet dry will dwindle to zero. We must prepare for this great step now, while we still have leeway.

All this is felt by those that came to wave farewell to the Lander. That is why they brought their children to share the stargazing, something very unusual for Americans who almost always separate their social activities by age: they want the next generation to remember that this tiny spacecraft and its companions carry our future.

Sojourner, the Lander’s predecessor, was the first to walk on Mars – a kid’s toy cart, which sent us thousands of pictures of the planet’s surface. A famous cartoonist showed it leaving human footprints, and he was right: these miniscule spacecraft, that have opened windows to the universe for us without costing even a millionth of a military aircraft, are the expression of our best selves. And they, along with our radio and television emissions, are our heralds and ambassadors to the unknown.

The day after the launch, the NASA PR office showed us around. The Space Center is within a national forest full of endangered flora and fauna. If the Federal Government had not inadvertently protected it, that entire coast would be a solid cement wall. The paths cross canals full of water lilies where alligators sun themselves. Egrets and cranes fish in the shallows. Above the rioting semi-tropical greenery rise the scaffoldings of the launch pads and the buildings where the spacecraft are built.

The building where the craft undergo final assembly is so large that it creates thermals. As a result, it is constantly circled by a fleet of hawks – a fitting retinue. Its vast interior creates such local temperature gradients that often it rains or fogs. Like an Escher drawing, it teems with skywalks and protrusions that hold entire labs. Looking down from the top you feel like a feather, as though here gravity doesn’t hold sway.

The launch pad that we visited is called Alpha. From there rose the Apollos for their trips to the moon. The pad is a giant Meccano set, a plaything for Titans. The surrounding wire fences are full of holes, from the jagged fragments of asphalt that erupt from the floor whenever it siphons the flames of liftoff.

I bent and took a piece of the worn, burnt asphalt. These scaffoldings don’t launch just spaceships and falcons. Around them fly the dreams of all humanity. This place is sacred, it has received sacrifices – the crew of the first Apollo, the crew of the Challenger, the nameless technicians of the missions. And the deity to whom these offerings are dedicated is Prometheus, who rose against mightier powers. His rebellion made us who we are and brought us here, in pain and in glory.