Toggle light / dark theme

With the recent meteor explosion over Russia coincident with the safe-passing of asteroid 2012 DA14, and an expectant spectacular approach by comet ISON due towards the end of 2013, one could suggest that the Year of the Snake is one where we should look to the skies and consider our long term safeguard against rocks from space.

Indeed, following the near ‘double whammy’ last week, where a 15 meter meteor caught us by surprise and caused extensive damage and injury in central Russia, while the larger anticipated 50 meter asteroid swept to within just 27,000 km of Earth, media reported an immediate response from astronomers with plans to create state-of-the-art detection systems to give warning of incoming asteroids and meteoroids. Concerns can be abated.
ATLAS, the Advanced Terrestrial-Impact Last Alert System is due to begin operations in 2015, and expects to give a one-week warning for a small asteroid – called “a city killer” – and three weeks for a larger “county killer” — providing time for evacuation of risk areas.

Deep Space Industries (a US Company), which is preparing to launch a series of small spacecraft later this decade aimed at surveying nearby asteroids for mining opportunities, could also be used to monitor smaller difficult-to-detect objects that threaten to strike Earth.

However — despite ISON doom-merchants — we are already in relatively safe hands. The SENTRY MONITORING SYSTEM maintains a Sentry Risk Table of possible future Earth impact events, typically tracking objects 50 meters or larger — none of which are currently expected to hit Earth. Other sources will tell you that comet ISON is not expected to pass any closer than 0.42 AU (63,000,000 km) from Earth — though it should still provide spectacular viewing in our night skies come December 2013. A recently trending threat, 140-metre wide asteroid AG5 was given just a 1-in-625 chance of hitting Earth in February 2040, though more recent measurements have reduced this risk to almost nil. The Torino Scale is currently used to rate the risk category of asteroid and comet impacts on a scale of 0 (no hazard) to 10 (globally-impacting certain collisions). At present, almost all known asteroids and comets are categorized as level 0 on this scale (AG5 was temporarily categorized at level 1 until recent measurements, and 2007 VK184, a 130 meter asteroid due for approach circa 2048–2057 is the only currently listed one categorized at level 1 or more).

An asteroid striking land will cause a crater far larger than its size. The diameter calculated in kilometers is = (energy of impact)(1÷3.4)÷106.77. As such, if an asteroid the size of AG5 (140-meter wide) were to strike Earth, it would create a crater over twice the diameter of Barringer Meteor Crater in northern Arizona and affect an area far larger — or on striking water, it would create a global-reach tsunami. Fortunately, the frequency of such an object striking Earth is quite low — perhaps once every 100,000 years. It is the smaller ones, such as the one which exploded over Russia last week which are the greater concern. These occur perhaps once every 100 years and are not easily detectable by our current methods — justifying the $5m funding NASA contributed to the new ATLAS development in Hawaii.

We are a long way from deploying a response system to deflect/destroy incoming meteors, though at least with ATLAS we will be more confident of getting out of the way when the sky falls in. More information on ATLAS: http://www.fallingstar.com/index.php

KILL.THE.ROBOTS
The Golden Rule is Not for Toasters

Simplistically nutshelled, talking about machine morality is picking apart whether or not we’ll someday have to be nice to machines or demand that they be nice to us.

Well, it’s always a good time to address human & machine morality vis-à-vis both the engineering and philosophical issues intrinsic to the qualification and validation of non-biological intelligence and/or consciousness that, if manifested, would wholly justify consideration thereof.

Uhh… yep!

But, whether at run-on sentence dorkville or any other tech forum, right from the jump one should know that a single voice rapping about machine morality is bound to get hung up in and blinded by its own perspective, e.g., splitting hairs to decide who or what deserves moral treatment (if a definition of that can even be nailed down), or perhaps yet another justification for the standard intellectual cul de sac:
“Why bother, it’s never going to happen.“
That’s tired and lame.

One voice, one study, or one robot fetishist with a digital bullhorn — one ain’t enough. So, presented and recommended here is a broad-based overview, a selection of the past year’s standout pieces on machine morality.The first, only a few days old, is actually an announcement of intent that could pave the way to forcing the actual question.
Let’s then have perspective:

Building a Brain — Being Humane — Feeling our Pain — Dude from the NYT
February 3, 2013 — Human Brain Project: Simulate One
Serious Euro-Science to simulate a human brain. Will it behave? Will we?

January 28, 2013 — NPR: No Mercy for Robots
A study of reciprocity and punitive reaction to non-human actors. Bad robot.

April 25, 2012 — IEEE Spectrum: Attributing Moral Accountability to Robots
On the human expectation of machine morality. They should be nice to me.

December 25, 2011 — NYT: The Future of Moral Machines
Engineering (at least functional) machine morality. Broad strokes NYT-style.

Expectations More Human than Human?
Now, of course you’re going to check out those pieces you just skimmed over, after you finish trudging through this anti-brevity technosnark©®™ hybrid, of course. When you do — you might notice the troubling rub of expectation dichotomy. Simply put, these studies and reports point to a potential showdown between how we treat our machines, how we might expect others to treat them, and how we might one day expect to be treated by them. For now morality is irrelevant, it is of no consideration nor consequence in our thoughts or intentions toward machines. But, at the same time we hold dear the expectation of reasonable treatment, if not moral, by any intelligent agent — even an only vaguely human robot.

Well what if, for example: 1. AI matures, and 2. machines really start to look like us?
(see: Leaping Across Mori’s Uncanny Valley: Androids Probably Won’t Creep Us Out)

Even now should someone attempt to smash your smartphone or laptop (or just touch it), you of course protect the machine. Extending beyond concerns over the mere destruction of property or loss of labor, could one morally abide harm done to one’s marginally convincing humanlike companion? Even if fully accepting of its artificiality, where would one draw the line between economic and emotional damage? Or, potentially, could the machine itself abide harm done to it? Even if imbued with a perfectly coded algorithmic moral code mandating “do no harm,” could a machine calculate its passive non-response to intentional damage as an immoral act against itself, and then react?

Yeah, these hypotheticals can go on forever, but it’s clear that blithely ignoring machine morality or overzealously attempting to engineer it might result in… immorality.

Probably Only a Temporary Non-Issue. Or Maybe. Maybe Not.
There’s an argument that actually needing to practically implement or codify machine morality is so remote that debate is, now and forever, only that — and oh wow, that opinion is superbly dumb. This author has addressed this staggeringly arrogant species-level macro-narcissism before (and it was awesome). See, outright dismissal isn’t a dumb argument because a self-aware machine or something close enough for us to regard as such is without doubt going to happen, it’s dumb because 1. absolutism is fascist, and 2. to the best of our knowledge, excluding the magic touch of Jesus & friends or aliens spiking our genetic punch or whatever, conscious and/or self-aware intelligence (which would require moral consideration) appears to be an emergent trait of massively powerful computation. And we’re getting really good at making machines do that.

Whatever the challenge, humans rarely avoid stabbing toward the supposedly impossible — and a lot of the time, we do land on the moon. The above mentioned Euro-project says it’ll need 10 years to crank out a human brain simulation. Okay, respectable. But, a working draft of the human genome, an initially 15-year international project, was completed 5 years ahead of schedule due largely to advances in brute force computational capability (in the not so digital 1990s). All that computery stuff like, you know, gets better a lot faster these days. Just sayin.

So, you know, might be a good idea to keep hashing out ideas on machine morality.
Because who knows what we might end up with…

Oh sure, I understand, turn me off, erase me — time for a better model, I totally get it.
- or -
Hey, meatsack, don’t touch me or I’ll reformat your squishy face!

Choose your own adventure!

[HUMAN BRAIN PROJECT]
[NO MERCY FOR ROBOTS — NPR]
[ATTRIBUTING MORAL ACCOUNTABILITY TO ROBOTS — IEEE]
[THE FUTURE OF MORAL MACHINES — NYT]

This piece originally appeared at Anthrobotic.com on February 7, 2013.

For those in Colorado who are interested in attending a talk by John Troeltzsch, Sentinel Ball Program Manager, Ball Aerospace & Technologies Corp. please R.S.V.P Chris Zeller ([email protected]) by Tuesday, 26 February 2013 for badge access. US citizenship required.

6:00 pm Thursday, February 28th 2013
6:00 pm Social, 6:30 pm Program
Ball Aerospace Boulder Campus RA7 Conference Room
1600 Commerce St
Boulder, CO 80301

It will be good to see you there.

About the Talk:
The inner solar system is populated with a half million asteroids larger than the one that struck Tunguska and yet we’ve identified and mapped only about one percent of these asteroids to date.

This month’s program will introduce the B612 Foundation and the first privately funded deep space mission–a space telescope designed to discover and track Near Earth Objects (NEO). This dynamic map of NEOs will provide the blueprint for future exploration of our Solar System, enabling potential astronaut missions and protection of the future of life on Earth.

The B612 Foundation is a California 501©(3) non-profit, private foundation dedicated to protecting the Earth from asteroid strikes. Its founding members Rusty Schweickart, Clark Chapman, Piet Hut, and Ed Lu established the foundation in 2002 with the goal of significantly altering the orbit of an asteroid in a controlled manner.

The B612 Foundation is working with Ball Aerospace, Boulder, CO, which is designing and building the Sentinel Infrared (IR) Space Telescope with the same expert team that developed the Spitzer and Kepler Space Telescopes. It will take approximately five years to complete development and testing to be ready for launch in 2017–2018.

About John Troeltzsch:
John Troeltzsch is the Sentinel mission program manager for Ball Aerospace. Troeltzsch received his Bachelor of Science in Aerospace Engineering from the University of Colorado in 1983 and was immediately hired by Ball Aerospace. While working at Ball, Troeltzsch continued his studies at C.U. and received his Masters of Science in Aerospace Engineering in 1989. He has been a member of AIAA for over 30 years. During his 29 years at Ball Aerospace, Troeltzsch has worked on three of Hubble’s science instruments and in program management for the Spitzer Space Telescope. Following Spitzer’s launch in 2003, Troeltzsch joined Ball’s Kepler team and was named program manager in 2007. For the Kepler mission, Troeltzsch has managed the Ball team, including responsibility for cost, schedule, and performance requirements.

Link to pdf copy of invitation, http://www.iseti.us/pdf/AIAA-Sentinel-Feb.pdf

I was recently accused on another blog of repeating a defeatist mantra.

My “mantra” has always been WE CAN GO NOW. The solutions are crystal clear to anyone who takes a survey of the available technology. What blinds people is their unwillingness to accept the cost of making it happen.
There is no cheap.

Paul Gilster comments on his blog Centauri Dreams, concerning Radiation, Alzheimer’s Disease and Fermi;

“Neurological damage from human missions to deep space — and the study goes no further than the relatively close Mars — would obviously affect our planning and create serious payload constraints given the need for what might have to be massive shielding.”

Massive shielding.
This is the game changer. The showstopper. The sea change. The paradigm shift.
The cosmic ray gorilla. Whatever you want to call it, it is the reality that most of what we are familiar with concerning human space flight is not going to work in deep space.
Massive Shielding=Nuclear Propulsion=Bombs
M=N=B
We have to transport nuclear materials to the Moon where we can light off a nuclear propulsion system. The Moon is where the ice-derived Water to fill up a Massive radiation shield is to be found.
Massive Shield=Water=Lunar Base
M=W=L
Sequentially: L=W=M=N=B
So, first and last, we need an HLV to get to this Lunar Base (where the Water for the shield is) and we need to safely transport Nuclear material there (and safely assemble and light off the Bombs to push the shield around).

Radiation shielding is the first determining factor in spaceship design and this largely determines the entire development of space travel.

http://voices.yahoo.com/water-bombs-8121778.html?cat=15

I recently posted this on the only two other sites that will allow me to express my opinions;

I see the problem as one of self similarity; trying to go cheap being the downfall of all these schemes to work around human physiology.

When I first became interested in space travel several years ago I would comment on a couple blogs and find myself constantly arguing with private space proponents- and saying over and over again, “there is no cheap.” I was finally excommunicated from that bunch and banned from posting. They would start calling me an idiot and other insults and when I tried to return the favor the moderator would block my replies. The person who runs those two sites works for a firm promoting space tourism- go figure.

The problem is that while the aerospace industry made some money off the space program as an outgrowth of the military industrial complex, it soon became clear that spaceships are hard money- they have to work. The example of this is the outrage over the Apollo 1 fire and subsequent oversight of contractors- a practice which disappeared after Apollo and resulted in the Space Shuttle being such a poor design. A portion of the shuttle development money reportedly went under the table into the B-1 bomber program; how much we will never know. Swing wings are not easy to build which is why you do not see it anymore; cuts into profits.

The easy money of cold war toys has since defeated any move by industry to take up the cause of space exploration. No easy money in spaceships. People who want something for nothing rarely end up with anything worth anything. Trying to find cheap ways around furnishing explorers with the physcial conditions human beings evolved in is going to fail. On the other hand if we start with a baseline of one gravity and Earth level radiation we are bound to succeed.

The engineering solutions to this baseline requirement are as I have already detailed; a tether for gravity and a massive moonwater shield with bomb propulsion. That is EXACTLY how to do it and I do not see any one else offering anything else that will work- just waffling and spewing about R&D.
We have been doing R&D for over half a century. It is a reason to go that is supposedly lacking.

When that crater in Mexico was discovered in 1980 the cold war was reaching it’s crescendo and the massive extinction it caused was overshadowed by the threat of nuclear weapons. Impact defense is still the only path to all that DOD money for a Moon base.

Recently, I met Josh Hopkins of Lockheed’s Advanced Programs, AIAA Rocky Mountain Region’s First Annual Technical Symposium (RMATS), October 26, 2012. Josh was the keynote speaker at this RMATS. Here is his presentation. After his presentation we talked outside the conference hall. I told him about my book, and was surprised when he said that two groups had failed to reproduce Podkletnov’s work. I knew one group had but a second? As we parted we said we’d keep in touch. But you know how life is, it has the habit of getting in the way of exciting research, and we lost touch.

About two weeks ago, I remembered, that Josh had said that he would provide some information on the second group that had failed to reproduce Podkletnov’s work. I sent him an email, and was very pleased to hear back from him and that the group’s finding had been published under the title “Gravity Modification by High-Temperature Semiconductors”. The authors were C. Woods, S. Cooke, J. Helme & C. Caldwell. Their paper was published in the 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, 8–11 July 2001, Salt Lake City, Utah. I bought a copy for the AIAA archives, and read it, reread it, and reread it.

Then I found a third team they published their lack of findings “Gravity Modification Experiments Using a Rotating Superconducting Disk and Radio Frequency Fields”. The authors were G. Hathaway, B. Cleveland and Y. Bao. Published in Physica C, 2003.

Both papers focused on attempting to build a correct superconducting disc. At least Wood et al said “the tests have not fulfilled the specified conditions for a gravity effect”. The single most difficult thing to do was to build a bilayered superconducting disc. Woods et al tried very hard to do so. Reading through Hathaway et all paper suggest that they too had similar difficulties. Photo shows a sample disc from Woods’ team. Observe the crack in the middle.

Further, Woods’ team was able to rotate their disc to 5,000 rpm. Hathaway’s team reports a rotational speed of between 400–800 rpm, a far cry from Podkletnov’s 5,000 rpm. This suggests that there were other problems in Hathaway’s disc not reported in their paper. With 400–800 rpm, if Hathaway were to observe a significant weight change it would have been less than the repeatable experimental sensitivity of 0.5mg!

Here are some quotes from Hathaway et al’s original paper “As a result of these tests it was decided that either the coil designs were inefficient at producing …”, “the rapid induction heating at room temperature cracked the non-superconducting disk into two pieces within 3 s”, “Further tests are needed to determine the proper test set-up required to detect the reverse Josephson junction effect in multi-grain bulk YBCO superconductors”.

It is quite obvious from reading both papers that neither team were able to faithfully reproduce Podkletnov’s work, and it is no wonder that at least Woods et al team stated “the tests have not fulfilled the specified conditions for a gravity effect”. This statement definitely applies to Hathaway et al’s research. There is more to critic both investigations, but .… this should be enough.

Now, for the final surprise. The first team I had mentioned earlier. Ning Li led the first team comprised of members from NASA and University of Huntsville, AL. It was revealed in conversations with a former team member that Ning Li’s team was disbanded before they could build the superconducting discs required to investigate Podkletnov’s claims. Wow!

If you think about it, all these “investigations” just showed that nobody in the US was capable of faithfully reproducing Podkletnov’s experiments to even disprove it.

What a big surprise! A null result is not a disproof.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

May peace break into your home and may thieves come to steal your debts.
May the pockets of your jeans become a magnet for $100 bills.
May love stick to your face like Vaseline and may laughter assault your lips!
May happiness slap you across the face and may your tears be that of joy
May the problems you had, forget your home address!

In simple words .….….……May 2013 be EXTRAORDINARY … the best year of your life!!! Simply the best New Year greeting anyone has sent to me. This was from Robert White of Extraordinary People.

This morning I checked the Lifeboat stats for 2012. When I started blogging for Lifeboat at the end of July, we ended July 2012 with 42,771 unique visitors. We closed 2012 with 90,920 unique visitors for the month December. Wow! Our blogging has become more relevant, and more thought provoking. As a community of bloggers (with the exception of one) we have moved away from the 3 Cs of pseudoscience. Clouding the field. Confusing the public’s perception. Chasing away talent.

How did we do this? By backing up our discussions with hard facts, robust debate and real numbers. From years if not decades of investigation in our field of research. By speaking from our own unique experience. By sharing that unique experience with our readers.

Once again, may 2013 be an extraordinary year.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

Gravity Modification – New Tools

Posted in business, cosmology, defense, education, engineering, general relativity, particle physics, philosophy, physics, policy, spaceTagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment on Gravity Modification – New Tools

To understand why gravity modification is not yet a reality, let’s analyze other fundamental discoveries/inventions that changed our civilization or at least the substantially changed the process of discovery. There are several that come to mind, the atomic bomb, heavier than air manned flight, the light bulb, personal computers, and protein folding. There are many other examples but these are sufficient to illustrate what it takes. Before we start, we have to understand four important and related concepts.

(1) Clusters or business clusters, first proposed by Harvard prof. Michael Porter, “a business cluster is a geographic concentration of interconnected businesses, suppliers, and associated institutions in a particular field. Clusters are considered to increase the productivity with which companies can compete, nationally and globally”. Toyota City which predates Porter’s proposal, comes to mind. China’s 12 new cities come to mind, and yes there are pro and cons.

(2) Hot housing, a place offering ideal conditions for the growth of an idea, activity, etc. (3) Crowdsourcing, is a process that involves outsourcing tasks to a distributed group of people. This process can occur both online and offline. Crowdsourcing is different from an ordinary outsourcing since it is a task or problem that is outsourced to an undefined public rather than a specific body. (4) Groundswell, a strong public feeling or opinion that is detectable even though not openly expressed.

I first read about the fascinating story of the making of the atom bomb from Stephane Groueff’s The Manhattan Project-the Making of the Atomic Bomb, in the 1970s. We get a clear idea why this worked. Under the direction of Major General Leslie Groves, and J. Robert Oppenheimer the US, UK & Canada hot housed scientist, engineers, and staff to invent and produce the atomic bomb physics, engineering and manufacturing capabilities. Today we term this key driver of success ‘hot housing’, the bringing together a group of experts to identify avenues for further research, to brainstorm potential solutions, and to test, falsify and validate research paths, focused on a specific desired outcome. The threat of losing out to the Axis powers helped increase this hot housing effect. This is much like what the Aspen Center for Physics is doing (video here).

In the case of the invention of the light bulb, the airplane, and the personal computer, there was a groundswell of public opinion that these inventions could be possible. This led potential inventors with the necessary basic skills to attempt to solve these problems. In the case of the incandescent light bulb, this process took about 70 years from Humphrey Davy in 1809, to Thomas A. Edison and Joseph Wilson Swan in 1879. The groundswell started with Humphrey and had included many by the time of Edison in 1879.

In the case of the airplane the Wright brothers reviewed other researchers’ findings (the groundswell had begun much earlier), and then invented several new tools & skills, flight control, model testing techniques, test pilot skills, light weight motors and new propeller designs.

The invention of the personal computer had the same groundswell effect (see Homebrew Computer Club & PBS TV transcripts). Ed Roberts, Gordon French, Fred Moore, Bob Harsh, George Morrow, Adam Osborne, Lee Felsenstein, Steve Jobs, Steve Wozniak, John Draper, Jerry Lawson, Ron Jones and Bill Gates all knew each other before many of them became wealthy and famous. Bill Gates wrote the first personal computer language, while the others invented various versions of the microcomputer, later to be known as the personal computer, and peripherals required. They invented the products and the tools necessary for the PC industry to take off.

With protein folding, Seth Cooper, game designer, developed Fold It, the tool that would make the investigation into protein folding accessible to an undefined public. Today we describe this ‘crowdsourcing’. Notice that here it wasn’t a specialized set of team that was hot housed, but the reverse, the general public, were given the tools to make crowdsourcing a viable means to solving a problem.

Thus four key elements are required to foster innovation, basic skills, groundswell, hothouse or crowdsourcing, and new tools.

So why hasn’t this happened with gravity modification? Some form of the groundswell is there. In his book The Hunt for Zero Point, Nick Cook (an editor of the esteemed Jane’s Defense Weekly) describes a history that goes back to World War II, and Nazi Germany. It is fund reading but Kurt Kleiner of Salon provides a sober review of The Hunt for Zero Point.

There are three primary reasons for this not having happened with gravity modification. First, over the last 50 years or so, there have only been about 50 to 100 people (outside of black projects) who have investigated this in a scientific manner. That is, the groundswell of researchers with the necessary basic skills has not reached a critical mass to take off. For example, protein folding needed at least 40,000 participants, today Fold It has 280,000 registered participants.

Second, pseudoscience has crept into the field previously known as ‘antigravity’. In respectable scientific circles the term used is gravity modification. Pseudoscience, has clouded the field, confused the public’s perception and chased away the talent – the 3 C’s of pseudoscience. Take for example, plutonium bomb propulsion (written by a non-scientist/non-engineer), basic investigation shows that this is neither feasible nor legal, but it still keeps being written up as a ‘real’ proposition. The correct term for plutonium bomb propulsion is pseudoscience.

Third reason. Per the definition of gravity modification, we cannot use existing theories to propose new tools because all our current status quo theories require mass. Therefore, short of my 12-year study, no new tools are forth coming.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.

http://news.yahoo.com/nowhere-japans-growing-plutonium-stockpile-064038796.html

A half century after being developed, nuclear pulse propulsion remains the only practical system of interplanetary travel. What is required to launch a bomb propelled mission to the outer solar system? Well, first you need.…..bombs.

There is no shortage of bomb material on planet Earth. The problem is lack of a vehicle that can get this material to the nearest place a nuclear mission can be launched; the Moon. For over a quarter of a century a launch vehicle capable of sending significant payloads (and people) to the Moon has been lacking. The Space Transportation System, aka the space shuttle, was a dead end as far as exploration due to the lack of funding for a Sidemount cargo version.

Now we wait on the SLS.

http://www.sciencedaily.com/releases/2012/12/121228100748.htm

Only this human rated Heavy Lift Vehicle (HLV) with a powerful escape tower will be suitable for transporting survivable packaged fissionables to the Moon. It is not only the fissionables that are required; hundreds of tons of water from lunar ice deposits are necessary to fill the radiation shield for any such Human Space Flight Beyond Earth Lunar Orbit (HSF-BELO).

Eventually lunar resources can be used to actually construct atomic spaceships and also the thorium reactors necessary to power colonies in the outer system. It is the establishment of a beam propulsion infrastructure that will finally open up the solar system to large scale development. This will require a massive infrastructure on the Moon. Such a base will serve as insurance against an extinction level event wiping out our species. As such it deserves a full measure of DOD funding. Like that trillion dollars that is going to be spent on the F-35 stealth fighter over the next half century.

Only monthly Heavy Lift Vehicle launches of payloads to the Moon can be considered as a beginning to a true space program- where Apollo left off. There is no cheap and there is no flexible path.

OK, why do we need a different technology to achieve commercial viability (as in mass space tourism) for either interplanetary or interstellar travel?

In many of my previous posts I had shown that all the currently proposed technologies or technologies to be, are either phenomenally expensive (on the order of several multiples of World GDP), bordering on the impossible or just plain conjecture. This is very unfortunate, as I was hoping that some of the proposals would at least appear realistic, but no joy. I feel very sorry for those who are funding these projects. For a refresher I have posted an updated version of the Interstellar Challenge Matrix (ICM) here which documents 5 of the 11 inconsistencies in modern physics. I give permission to my readers to use this material for non-commercial or academic uses.

I recently completed the 12-year study into the theoretical & technological feasibility of gravity modification published under the title An Introduction to Gravity Modification, 2nd Edition. For the very first time we now have a scientific definition for gravity modification:

Gravity modification is defined as the modification of the strength and/or direction of the gravitational acceleration without the use of mass as the primary source of this modification, in local space time. It consists of field modulation and field vectoring. Field modulation is the ability to attenuate or amplify a force field. Field vectoring is the ability to change the direction of this force field.

Note that this definition specifically states “without the use of mass”, for obvious reasons – for example it does not make sense to carry around the mass of a planet to propel 7 astronauts, does it?

By this definition alone, we have eliminated all three status quo theories – general relativity, quantum gravity and string theories. Therefore, the urgent need to construct a new theory that will facilitate the development of gravity modification technologies.

And further, by this definition we know the additional requirements of such a new theory. The theory should show us, firstly, how to attenuate or amplify the gravitational field strength, and secondly, how to change the direction of this force field – all without using mass.

—————————————————————————————————

Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.