Toggle light / dark theme

Until 2006 our Solar System consisted essentially of a star, planets, moons, and very much smaller bodies known as asteroids and comets. In 2006 the International Astronomical Union’s (IAU) Division III Working Committee addressed scientific issues and the Planet Definition Committee address cultural and social issues with regard to planet classifications. They introduced the “pluton” for bodies similar to planets but much smaller.

The IAU set down three rules to differentiate between planets and dwarf planets. First, the object must be in orbit around a star, while not being itself a star. Second, the object must be large enough (or more technically correct, massive enough) for its own gravity to pull it into a nearly spherical shape. The shape of objects with mass above 5×1020 kg and diameter greater than 800 km would normally be determined by self-gravity, but all borderline cases would have to be established by observation.

Third, plutons or dwarf planets, are distinguished from classical planets in that they reside in orbits around the Sun that take longer than 200 years to complete (i.e. they orbit beyond Neptune). Plutons typically have orbits with a large orbital inclination and a large eccentricity (noncircular orbits). A planet should dominate its zone, either gravitationally, or in its size distribution. That is, the definition of “planet” should also include the requirement that it has cleared its orbital zone. Of course this third requirement automatically implies the second. Thus, one notes that planets and plutons are differentiated by the third requirement.

As we are soon to become a space faring civilization, we should rethink these cultural and social issues, differently, by subtraction or addition. By subtraction, if one breaks the other requirements? Comets and asteroids break the second requirement that the object must be large enough. Breaking the first requirement, which the IAU chose not address at the time, would have planet sized bodies not orbiting a star. From a socio-cultural perspective, one could suggest that these be named “darktons” (from dark + plutons). “Dark” because without orbiting a star, these objects would not be easily visible; “tons” because in deep space, without much matter, these bodies could not meet the third requirement of being able to dominate its zone.

Taking this socio-cultural exploration a step further, by addition, a fourth requirement is that of life sustaining planets. The scientific evidence suggest that life sustaining bodies would be planet-sized to facilitate a stable atmosphere. Thus, a life sustaining planet would be named “zoeton” from the Greek zoe for life. For example Earth is a zoeton while Mars may have been.

Again by addition, one could define, from the Latin aurum for gold, “auton”, as a heavenly body, comets, asteroids, plutons and planets, whose primary value is that of mineral or mining interest. Therefore, Jupiter is not a zoeton, but could be an auton if one extracts hydrogen or helium from this planet. Another auton is 55 Cancri e, a planet 40 light years away, for mining diamonds with an estimated worth of $26.9x1030. The Earth is both a zoeton and an auton, as it both, sustains life and has substantial mining interests, respectively. Not all plutons or planets could be autons. For example Pluto would be too cold and frozen for mining to be economical, and therefore, frozen darktons would most likely not be autons.

At that time the IAU also did not address the upper limit for a planet’s mass or size. Not restricting ourselves to planetary science would widen our socio-cultural exploration. A social consideration would be the maximum gravitational pull that a human civilization could survive, sustain and flourish in. For example, for discussion sake, a gravitational pull greater the 2x Earth’s or 2g, could be considered the upper limit. Therefore, planets with larger gravitational pulls than 2g would be named “kytons” from the Antikythera mechanical computer as only machines could survive and sustain such harsh conditions over long periods of time. Jupiter would be an example of such a kyton.

Are there any bodies between the gaseous planet Jupiter and brown dwarfs? Yes, they have been named Y-dwarfs. NASA found one with a surface temperature of only 80 degrees Fahrenheit, just below that of a human. It is possible these Y-dwarfs could be kytons and autons as a relatively safe (compared to stars) source of hydrogen.

Taking a different turn, to complete the space faring vocabulary, one can redefine transportation by their order of magnitudes. Atmospheric transportation, whether for combustion intake or winged flight can be termed, “atmosmax” from “atmosphere”, and Greek “amaxi” for car or vehicle. Any vehicle that is bound by the distances of the solar system but does not require an atmosphere would be a “solarmax”. Any vehicle that is capable of interstellar travel would be a “starship”. And one capable of intergalactic travel would be a “galactica”.

We now have socio-cultural handles to be a space faring civilization. A vocabulary that facilitates a common understanding and usage. Exploration implies discovery. Discovery means new ideas to tackle new environments, new situations and new rules. This can only lead to positive outcomes. Positive outcomes means new wealth, new investments and new jobs. Let’s go forth and add to these cultural handles.

Ben Solomon is a Committee Member of the Nuclear and Future Flight Propulsion Technical Committee, American Institute of Aeronautics & Astronautics (AIAA), and author of An Introduction to Gravity Modification and Super Physics for Super Technologies: Replacing Bohr, Heisenberg, Schrödinger & Einstein (Kindle Version)

CoverThumbnailTitle: Super Physics for Super Technologies
Sub Title: Replacing Bohr, Heisenberg, Schrödinger & Einstein
Author: Benjamin T Solomon
Paperback: 154 pages
Publisher: Propulsion Physics, Inc. (March 19, 2015)
ISBN-10: 1508948011
ISBN-13: 978–1508948018
Language: English

Publisher’s Link: Super Physics for Super Technologies
Amazon’s Link: Super Physics for Super Technologies

Reviewer’s comments: “Benjamin is the second researcher I have met who has tried to consider a nonsingular cosmology. The first was Christi Stoica, which I met in 2010″.
Andrew Beckwith PhD

The Objective: This book, Super Physics for Super Technologies, proposes that a new physics exists. The findings are based on 16 years of extensive numerical modeling with empirical data, and therefore, both testable and irrefutable.

The Need: In 2012 Prof. Nemiroff, using Hubble photographs, showed that quantum foam cannot exists. In 2013, Solomon showed that both exotic matter and strings could not exists. In 2015 the Kavli Foundation, with Prof. Efstathiou, Prof. Pryke, Prof. Steinhard discussed the issues with the Planck Space Telescope findings of a Universe that is significantly simpler than our theories. Therefore the need for new physics.

The Benefits: The replacement of the Schrödinger wave function with a simpler probabilistic wave function, results in a new electron shell model based on the Rydberg equation, giving exact results with quantum mechanics; leading to a new Standard Model and the unification of photon shielding, transmission and invisibility as the same phenomenon. Solomon’s inference is that any current or future stealth technology can be neutralized.

The Possibilities: Is it possible to rewrite physics and the old great cherished masters? This work is based on extensive numerical modeling of known empirical data and theorizing. Therefore, the answer must be YES.

Acknowledgements: I would like to thank Lockheed for nominating me to the position of Committee Member, Nuclear and Future Flight Propulsion Technical Committee, American Institute of Aeronautics & Astronautics (AIAA)

Mechanics of Gravity Modification

Posted in defense, education, engineering, general relativity, military, particle physics, philosophy, physics, policy, scientific freedom, spaceTagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment on Mechanics of Gravity Modification

The Rocky Mountain chapter of the American Institute of Astronautics & Aeronautics (AIAA) will be having their 2nd Annual Technical Symposium, October 25 2013. The call for papers ends May 31 2013. I would recommend submitting your papers. This conference gives you the opportunity to put your work together in a cohesive manner, get feedback and keep your copyrights, before you write your final papers for journals you will submitting to. A great way to polish your papers.

Here is the link to the call for papers: http://www.iseti.us/pdf/RMAIAA_Call_For_Abstracts_2013-0507.pdf

Here is the link to the conference: http://www.iseti.us/pdf/RMAIAA_General_Advert_2013-0507.pdf

I’ll be presenting 2 papers. The first is a slightly revised version of the presentation I gave at the APS April 2013 conference here in Denver (http://www.iseti.us/WhitePapers/APS2013/Solomon-APS-April(2013-04-15).pdf). The second is titled ‘The Mechanics of Gravity Modification’.

Fabrizio Brocca from Italy wanted to know more about the Ni field shape for a rotating-spinning-disc. Finally, a question from someone who has read my book. This is not easy to explain over email, so I’m presenting the answers to his questions at this conference, as ‘The Mechanics of Gravity Modification’. That way I can reach many more people. Hope you can attend, read the book, and have your questions ready. I’m looking forward to your questions. This is going to be a lively discussion, and we can adjourn off conference.

My intention for using this forum to explain some of my research is straight forward. There will be (if I am correct) more than 100 aerospace companies in attendance, and I am expecting many of them will return to set up engineering programs to reproduce, test and explore gravity modification as a working technology.

Fabrizio Brocca I hope you can make it to Colorado this October, too.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

Yesterday, March 25 2013, the Colorado Legislature passed a resolution making March 25, Aerospace Day. What a great way to celebrate Colorado’s participation in space endeavors. The state is the second largest employer of space related companies. Thanks to Colorado Space Business Roundtable (CSBR), the Colorado Space Coalition (CSC), the Rocky Mountain AIAA (RMAIAA), and the many sponsors who helped make this possible.

The sponsors are Aurora Chamber of Commerce, Ball Aerospace Technologies, GH Phipps Construction, Lockheed Martin Space Systems, Metro State University of Denver, United Launch Alliance, Red Canyon Software, Sierra Nevada Corporation, Webster University, and the Wings Over the Rockies Air and Space Museum.

Picture of the Colorado Senate just after passing the resolution.

Picture of the Colorado House of Representative congratulating CSBR, CSC & RMAIAA just after having passed the resolution.

If we are to become a space faring civilization it is important to celebrate our efforts in space endeavors. Our Colorado legislature recognized the need and passed the resolution to make March 25 Colorado’s Aerospace Day. I hope all the other states will would join Colorado and make March 25 Aerospace Day, and one day March 25 will be the national Aerospace Day.

———————-

I received some photos from Michael Piccone. Here they are

Picture of the inside Capitol Hill showing some of the attendees visiting with the exhibitors.

Picture of 60+ of us who attended. There were more, and we were the ones who posed for this photo.

Close up of on of our state senators.

Some of the people who planned and made this event and resolution possible. They are from CSBR, CSC, Colorado Legislature, Lockheed, Boeing, Wings Over the Rockies.…

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

For those in Colorado who are interested in attending a talk by John Troeltzsch, Sentinel Ball Program Manager, Ball Aerospace & Technologies Corp. please R.S.V.P Chris Zeller ([email protected]) by Tuesday, 26 February 2013 for badge access. US citizenship required.

6:00 pm Thursday, February 28th 2013
6:00 pm Social, 6:30 pm Program
Ball Aerospace Boulder Campus RA7 Conference Room
1600 Commerce St
Boulder, CO 80301

It will be good to see you there.

About the Talk:
The inner solar system is populated with a half million asteroids larger than the one that struck Tunguska and yet we’ve identified and mapped only about one percent of these asteroids to date.

This month’s program will introduce the B612 Foundation and the first privately funded deep space mission–a space telescope designed to discover and track Near Earth Objects (NEO). This dynamic map of NEOs will provide the blueprint for future exploration of our Solar System, enabling potential astronaut missions and protection of the future of life on Earth.

The B612 Foundation is a California 501©(3) non-profit, private foundation dedicated to protecting the Earth from asteroid strikes. Its founding members Rusty Schweickart, Clark Chapman, Piet Hut, and Ed Lu established the foundation in 2002 with the goal of significantly altering the orbit of an asteroid in a controlled manner.

The B612 Foundation is working with Ball Aerospace, Boulder, CO, which is designing and building the Sentinel Infrared (IR) Space Telescope with the same expert team that developed the Spitzer and Kepler Space Telescopes. It will take approximately five years to complete development and testing to be ready for launch in 2017–2018.

About John Troeltzsch:
John Troeltzsch is the Sentinel mission program manager for Ball Aerospace. Troeltzsch received his Bachelor of Science in Aerospace Engineering from the University of Colorado in 1983 and was immediately hired by Ball Aerospace. While working at Ball, Troeltzsch continued his studies at C.U. and received his Masters of Science in Aerospace Engineering in 1989. He has been a member of AIAA for over 30 years. During his 29 years at Ball Aerospace, Troeltzsch has worked on three of Hubble’s science instruments and in program management for the Spitzer Space Telescope. Following Spitzer’s launch in 2003, Troeltzsch joined Ball’s Kepler team and was named program manager in 2007. For the Kepler mission, Troeltzsch has managed the Ball team, including responsibility for cost, schedule, and performance requirements.

Link to pdf copy of invitation, http://www.iseti.us/pdf/AIAA-Sentinel-Feb.pdf