Toggle light / dark theme

In this essay I argue that technologies and techniques used and developed in the fields of Synthetic Ion Channels and Ion Channel Reconstitution, which have emerged from the fields of supramolecular chemistry and bio-organic chemistry throughout the past 4 decades, can be applied towards the purpose of gradual cellular (and particularly neuronal) replacement to create a new interdisciplinary field that applies such techniques and technologies towards the goal of the indefinite functional restoration of cellular mechanisms and systems, as opposed to their current proposed use of aiding in the elucidation of cellular mechanisms and their underlying principles, and as biosensors.

In earlier essays (see here and here) I identified approaches to the synthesis of non-biological functional equivalents of neuronal components (i.e. ion-channels ion-pumps and membrane sections) and their sectional integration with the existing biological neuron — a sort of “physical” emulation if you will. It has only recently come to my attention that there is an existing field emerging from supramolecular and bio-organic chemistry centered around the design, synthesis, and incorporation/integration of both synthetic/artificial ion channels and artificial bilipid membranes (i.e. lipid bilayer). The potential uses for such channels commonly listed in the literature have nothing to do with life-extension however, and the field is to my knowledge yet to envision the use of replacing our existing neuronal components as they degrade (or before they are able to), rather seeing such uses as aiding in the elucidation of cellular operations and mechanisms and as biosensors. I argue here that the very technologies and techniques that constitute the field (Synthetic Ion-Channels & Ion-Channel/Membrane Reconstitution) can be used towards the purpose of the indefinite-longevity and life-extension through the iterative replacement of cellular constituents (particularly the components comprising our neurons – ion-channels, ion-pumps, sections of bi-lipid membrane, etc.) so as to negate the molecular degradation they would have otherwise eventually undergone.

While I envisioned an electro-mechanical-systems approach in my earlier essays, the field of Synthetic Ion-Channels from the start in the early 70’s applied a molecular approach to the problem of designing molecular systems that produce certain functions according to their chemical composition or structure. Note that this approach corresponds to (or can be categorized under) the passive-physicalist sub-approach of the physicalist-functionalist approach (the broad approach overlying all varieties of physically-embodied, “prosthetic” neuronal functional replication) identified in an earlier essay.

The field of synthetic ion channels is also referred to as ion-channel reconstitution, which designates “the solubilization of the membrane, the isolation of the channel protein from the other membrane constituents and the reintroduction of that protein into some form of artificial membrane system that facilitates the measurement of channel function,” and more broadly denotes “the [general] study of ion channel function and can be used to describe the incorporation of intact membrane vesicles, including the protein of interest, into artificial membrane systems that allow the properties of the channel to be investigated” [1]. The field has been active since the 1970s, with experimental successes in the incorporation of functioning synthetic ion channels into biological bilipid membranes and artificial membranes dissimilar in molecular composition and structure to biological analogues underlying supramolecular interactions, ion selectivity and permeability throughout the 1980’s, 1990’s and 2000’s. The relevant literature suggests that their proposed use has thus far been limited to the elucidation of ion-channel function and operation, the investigation of their functional and biophysical properties, and in lesser degree for the purpose of “in-vitro sensing devices to detect the presence of physiologically-active substances including antiseptics, antibiotics, neurotransmitters, and others” through the “… transduction of bioelectrical and biochemical events into measurable electrical signals” [2].

Thus my proposal of gradually integrating artificial ion-channels and/or artificial membrane sections for the purpse of indefinite longevity (that is, their use in replacing existing biological neurons towards the aim of gradual substrate replacement, or indeed even in the alternative use of constructing artificial neurons to, rather than replace existing biological neurons, become integrated with existing biological neural networks towards the aim of intelligence amplification and augmentation while assuming functional and experiential continuity with our existing biological nervous system) appears to be novel, while the notion of artificial ion-channels and neuronal membrane systems ion general had already been conceived (and successfully created/experimentally-verified, though presumably not integrated in-vivo).

The field of Functionally-Restorative Medicine (and the orphan sub-field of whole-brain-gradual-substrate-replacement, or “physically-embodied” brain-emulation if you like) can take advantage of the decades of experimental progress in this field, incorporating both the technological and methodological infrastructures used in and underlying the field of Ion-Channel Reconstitution and Synthetic/Artificial Ion Channels & Membrane-Systems (and the technologies and methodologies underlying their corresponding experimental-verification and incorporation techniques) for the purpose of indefinite functional restoration via the gradual and iterative replacement of neuronal components (including sections of bilipid membrane, ion channels and ion pumps) by MEMS (micro-electrocal-mechanical-systems) or more likely NEMS (nano-electro-mechanical systems).

The technological and methodological infrastructure underlying this field can be utilized for both the creation of artificial neurons and for the artificial synthesis of normative biological neurons. Much work in the field required artificially synthesizing cellular components (e.g. bilipid membranes) with structural and functional properties as similar to normative biological cells as possible, so that the alternative designs (i.e. dissimilar to the normal structural and functional modalities of biological cells or cellular components) and how they affect and elucidate cellular properties, could be effectively tested. The iterative replacement of either single neurons, or the sectional replacement of neurons with synthesized cellular components (including sections of the bi-lipid membrane, voltage-dependent ion-channels, ligand-dependent ion channels, ion pumps, etc.) is made possible by the large body of work already done in the field. Consequently the technological, methodological and experimental infrastructures developed for the fields of Synthetic

Ion-Channels and Ion-Channel/Artificial-Membrane-Reconstitution can be utilized for the purpose of a.) iterative replacement and cellular upkeep via biological analogues (or not differing significantly in structure or functional & operational modality to their normal biological counterparts) and/or b.) iterative replacement with non-biological analogues of alternate structural and/or functional modalities.

Rather than sensing when a given component degrades and then replacing it with an artificially-synthesized biological or non-biological analogue, it appears to be much more efficient to determine the projected time it takes for a given component to degrade or otherwise lose functionality, and simply automate the iterative replacement in this fashion, without providing in-vivo systems for detecting molecular or structural degradation. This would allow us to achieve both experimental and pragmatic success in such cellular-prosthesis sooner, because it doesn’t rely on the complex technological and methodological infrastructure underlying in-vivo sensing, especially on the scale of single neuron components like ion-channels, and without causing operational or functional distortion to the components being sensed.

A survey of progress in the field [3] lists several broad design motifs. I will first list the deign motifs falling within the scope of the survey, and the examples it provides. Selections from both papers are meant to show the depth and breadth of the field, rather than to elucidate the specific chemical or kinetic operations under the purview of each design-variety.

For a much more comprehensive, interactive bibliography of papers falling within the field of Synthetic Ion-Channels or constituting the historical foundations of the field, see Jon Chui’s online biography here, which charts the developments in this field up until 2011.

First Survey

Unimolecular ion channels:

Examples include a.) synthetic ion channels with oligocrown ionophores, [5] b.) using a-helical peptide scaffolds and rigid push–pull p-octiphenyl scaffolds for the recognition of polarized membranes, [6] and c.) modified varieties of the b-helical scaffold of gramicidin A [7]

Barrel-stave supramolecules:

Examples of this general class falling include avoltage-gated synthetic ion channels formed by macrocyclic bolaamphiphiles and rigidrod p-octiphenyl polyols [8].

Macrocyclic, branched and linear non-peptide bolaamphiphiles as staves:

Examples of this sub-class include synthetic ion channels formed by a.) macrocyclic, branched and linear bolaamphiphiles and dimeric steroids, [9] and by b.) non-peptide macrocycles, acyclic analogs and peptide macrocycles [respectively] containing abiotic amino acids [10].

Dimeric steroid staves:

Examples of this sub-class include channels using polydroxylated norcholentriol dimer [11].

pOligophenyls as staves in rigid rod b barrels:

Examples of this sub-class include “cylindrical self-assembly of rigid-rod b-barrel pores preorganized by the nonplanarity of p-octiphenyl staves in octapeptide-p-octiphenyl monomers” [12].

Synthetic Polymers:

Examples of this sub-class include synthetic ion channels and pores comprised of a.) polyalanine, b.) polyisocyanates, c.) polyacrylates, [13] formed by i.) ionophoric, ii.) ‘smart’ and iii.) cationic polymers [14]; d.) surface-attached poly(vinyl-n-alkylpyridinium) [15]; e.) cationic oligo-polymers [16] and f.) poly(m-phenylene ethylenes) [17].

Helical b-peptides (used as staves in barrel-stave method):

Examples of this class include: a.) cationic b-peptides with antibiotic activity, presumably acting as amphiphilic helices that form micellar pores in anionic bilayer membranes [18].

Monomeric steroids:

Examples of this sub-class falling include synthetic carriers, channels and pores formed by monomeric steroids [19], synthetic cationic steroid antibiotics [that] may act by forming micellar pores in anionic membranes [20], neutral steroids as anion carriers [21] and supramolecular ion channels [22].

Complex minimalist systems:

Examples of this sub-class falling within the scope of this survey include ‘minimalist’ amphiphiles as synthetic ion channels and pores [23], membrane-active ‘smart’ double-chain amphiphiles, expected to form ‘micellar pores’ or self-assemble into ion channels in response to acid or light [24], and double-chain amphiphiles that may form ‘micellar pores’ at the boundary between photopolymerized and host bilayer domains and representative peptide conjugates that may self assemble into supramolecular pores or exhibit antibiotic activity [25].

Non-peptide macrocycles as hoops:

Examples of this sub-class falling within the scope of this survey include synthetic ion channels formed by non-peptide macrocycles acyclic analogs [26] and peptide macrocycles containing abiotic amino acids [27].

Peptide macrocycles as hoops and staves:

Examples of this sub-class include a.) synthetic ion channels formed by self-assembly of macrocyclic peptides into genuine barrel-hoop motifs that mimic the b-helix of gramicidin A with cyclic b-sheets. The macrocycles are designed to bind on top of channels and cationic antibiotics (and several analogs) are proposed to form micellar pores in anionic membranes [28]; b.) synthetic carriers, antibiotics (and analogs) and pores (and analogs) formed by macrocyclic peptides with non-natural subunits. [Certain] macrocycles may act as b-sheets, possibly as staves of b-barrel-like pores [29]; c.) bioengineered pores as sensors. Covalent capturing and fragmentations [have been] observed on the single-molecule level within engineered a-hemolysin pore containing an internal reactive thiol [30].

Summary

Thus even without knowledge of supramolecular or organic chemistry, one can see that a variety of alternate approaches to the creation of synthetic ion channels, and several sub-approaches within each larger ‘design motif’ or broad-approach, not only exist but have been experimentally verified, varietized and refined.

Second Survey

The following selections [31] illustrate the chemical, structural and functional varieties of synthetic ions categorized according to whether they are cation-conducting or anion-conducting, respectively. These examples are used to further emphasize the extent of the field, and the number of alternative approaches to synthetic ion-channel design, implementation, integration and experimental-verification already existent. Permission to use all the following selections and figures were obtained from the author of the source.

There are 6 classical design-motifs for synthetic ion-channels, categorized by structure, that are identified within the paper:

A: unimolecular macromolecules,
B: complex barrel-stave,
C: barrel-rosette,
D: barrel hoop, and
E: micellar supramolecules.

Cation Conducting Channels:

UNIMOLECULAR

“The first non-peptidic artificial ion channel was reported by Kobuke et al. in 1992” [33].

“The channel contained “an amphiphilic ion pair consisting of oligoether-carboxylates and mono- (or di-) octadecylammoniumcations. The carboxylates formed the channel core and the cations formed the hydrophobic outer wall, which was embedded in the bilipid membrane with a channel length of about 24 to 30 Å. The resultant ion channel, formed from molecular self-assembly, is cation selective and voltage-dependent” [34].

“Later, Kokube et al. synthesized another channel comprising of resorcinol based cyclic tetramer as the building block. The resorcin-[4]-arenemonomer consisted of four long alkyl chains which aggregated to forma dimeric supramolecular structure resembling that of Gramicidin A” [35]. “Gokel et al. had studied [a set of] simple yet fully functional ion channels known as “hydraphiles” [39].

“An example (channel 3) is shown in Figure 1.6, consisting of diaza-18-crown-6 crown ether groups and alkyl chain as side arms and spacers. Channel 3 is capable of transporting protons across the bilayer membrane” [40].

“A covalently bonded macrotetracycle4 (Figure 1.8) had shown to be about three times more active than Gokel’s ‘hydraphile’ channel, and its amide-containing analogue also showed enhanced activity” [44].

“Inorganic derivative using crown ethers have also been synthesized. Hall et. al synthesized an ion channel consisting of a ferrocene and 4 diaza-18-crown-6 linked by 2 dodecyl chains (Figure 1.9). The ion channel was redox-active as oxidation of the ferrocene caused the compound to switch to an inactive form” [45]

B STAVES:

“These are more difficult to synthesize [in comparison to unimolecular varieties] because the channel formation usually involves self-assembly via non-covalent interactions” [47].“A cyclic peptide composed of even number of alternating D- and L-amino acids (Figure 1.10) was suggested to form barrel-hoop structure through backbone-backbone hydrogen bonds by De Santis” [49].

“A tubular nanotube synthesized by Ghadiri et al. consisting of cyclic D and L peptide subunits form a flat, ring-shaped conformation that stack through an extensive anti-parallel β-sheet-like hydrogen bonding interaction (Figure 1.11)” [51].

“Experimental results have shown that the channel can transport sodium and potassium ions. The channel can also be constructed by the use of direct covalent bonding between the sheets so as to increase the thermodynamic and kinetic stability” [52].

“By attaching peptides to the octiphenyl scaffold, a β-barrel can be formed via self-assembly through the formation of β-sheet structures between the peptide chains (Figure 1.13)” [53].

“The same scaffold was used by Matile etal. to mimic the structure of macrolide antibiotic amphotericin B. The channel synthesized was shown to transport cations across the membrane” [54].

“Attaching the electron-poor naphthalenediimide (NDIs) to the same octiphenyl scaffold led to the hoop-stave mismatch during self-assembly that results in a twisted and closed channel conformation (Figure 1.14). Adding the compleentary dialkoxynaphthalene (DAN) donor led to the cooperative interactions between NDI and DAN that favors the formation of barrel-stave ion channel.” [57].

MICELLAR

“These aggregate channels are formed by amphotericin involving both sterols and antibiotics arranged in two half-channel sections within the membrane” [58].

“An active form of the compound is the bolaamphiphiles (two-headed amphiphiles). (Figure 1.15) shows an example that forms an active channel structure through dimerization or trimerization within the bilayer membrane. Electrochemical studies had shown that the monomer is inactive and the active form involves dimer or larger aggregates” [60].

ANION CONDUCTING CHANNELS:

“A highly active, anion selective, monomeric cyclodextrin-based ion channel was designed by Madhavan et al (Figure 1.16). Oligoether chains were attached to the primary face of the β-cyclodextrin head group via amide bonds. The hydrophobic oligoether chains were chosen because they are long enough to span the entire lipid bilayer. The channel was able to select “anions over cations” and “discriminate among halide anions in the order I-> Br-> Cl- (following Hofmeister series)” [61].

“The anion selectivity occurred via the ring of ammonium cations being positioned just beside the cyclodextrin head group, which helped to facilitate anion selectivity. Iodide ions were transported the fastest because the activation barrier to enter the hydrophobic channel core is lower for I- compared to either Br- or Cl-“ [62]. “A more specific artificial anion selective ion channel was the chloride selective ion channel synthesized by Gokel. The building block involved a heptapeptide with Proline incorporated (Figure 1.17)” [63].

Cellular Prosthesis: Inklings of a New Interdisciplinary Approach

The paper cites “nanoreactors for catalysis and chemical or biological sensors” and “interdisciplinary uses as nano –filtration membrane, drug or gene delivery vehicles/transporters as well as channel-based antibiotics that may kill bacterial cells preferentially over mammalian cells” as some of the main applications of synthetic ion-channels [65], other than their normative use in elucidating cellular function and operation.

However, I argue that a whole interdisciplinary field and heretofore-unrecognized new approach or sub-field of Functionally-Restorative Medicine is possible through taking the technologies and techniques involved in in constructing, integrating, and experimentally-verifying either a.) non-biological analogues of ion-channels & ion-pumps (thus trans-membrane membrane proteins in general, also sometimes referred to as transport proteins or integral membrane proteins) and membranes (which include normative bilipid membranes, non-lipid membranes and chemically-augmented bilipid membranes), and b.) the artificial synthesis of biological analogues of ion-channels, ion-pumps and membranes, which are structurally and chemically equivalent to naturally-occurring biological components but which are synthesized artificially – and applying such technologies and techniques toward the purpose the gradual replacement of our existing biological neurons constituting our nervous systems – or at least those neuron-populations that comprise the neo- and prefrontal-cortex, and through iterative procedures of gradual replacement thereby achieving indefinite-longevity. There is still work to be done in determining the comparative advantages and disadvantages of various structural and functional (i.e. design) motifs, and in the logistics of implanting the iterative replacement or reconstitution of ion-channels, ion-pumps and sections of neuronal membrane in-vivo.

The conceptual schemes outlined in Concepts for Functional Replication of Biological Neurons [66], Gradual Neuron Replacement for the Preservation of Subjective-Continuity [67] and Wireless Synapses, Artificial Plasticity, and Neuromodulation [68] would constitute variations on the basic approach underlying this proposed, embryonic interdisciplinary field. Certain approaches within the fields of nanomedicine itself, particularly those approaches that constitute the functional emulation of existing cell-types, such as but not limited to Robert Freitas’s conceptual designs for the functional emulation of the red blood cell (a.k.a. erythrocytes, haematids) [69], i.e. the Resperocyte, itself should be seen as falling under the purview of this new approach, although not all approaches to Nanomedicine (diagnostics, drug-delivery and neuroelectronic interfacing) constitute the physical (i.e. electromechanical, kinetic and/or molecular physically-embodied) and functional emulation of biological cells.

The field of functionally-restorative medicine in general (and of nanomedicine in particular) and the field of supramolecular and organic chemistry converge here, where these technological, methodological, and experimental infrastructures developed in field of Synthetic Ion-Channels and Ion Channel Reconstitution can be employed to develop a new interdisciplinary approach that applies the logic of prosthesis to the cellular and cellular-component (i.e. sub-cellular) scale; same tools, new use. These techniques could be used to iteratively replace the components of our neurons as they degrade, or to replace them with more robust systems that are less susceptible to molecular degradation. Instead of repairing the cellular DNA, RNA and protein transcription and synthesis machinery, we bypass it completely by configuring and integrating the neuronal components (ion-channels, ion-pumps and sections of bilipid membrane) directly.

Thus I suggest that theoreticians of nanomedicine look to the large quantity of literature already developed in the emerging fields of synthetic ion-channels and membrane-reconstitution, towards the objective of adapting and applying existing technologies and methodologies to the new purpose of iterative maintenance, upkeep and/or replacement of cellular (and particularly neuronal) constituents with either non-biological analogues or artificially-synthesized-but-chemically/structurally-equivalent biological analogues.

This new sub-field of Synthetic Biology needs a name to differentiate it from the other approaches to Functionally-Restorative Medicine. I suggest the designation ‘cellular prosthesis’.

References:

[1] Williams (1994)., An introduction to the methods available for ion channel reconstitution. in D.C Ogden Microelectrode techniques, The Plymouth workshop edition, CambridgeCompany of Biologists.

[2] Tomich, J., Montal, M. (1996). U.S Patent No. 5,16,890. Washington, DC: U.S. Patent and Trademark Office.

[3] Matile, S., Som, A., & Sorde, N. (2004). Recent synthetic ion channels and pores. Tetrahedron, 60(31), 6405-6435. ISSN 0040-4020, 10.1016/j.tet.2004.05.052. Access: http://www.sciencedirect.com/science/article/pii/S0040402004007690:

[4] XIAO, F., (2009). Synthesis and structural investigations of pyridine-based aromatic foldamers.

[5] Ibid., p. 6411.

[6] Ibid., p. 6416.

[7] Ibid., p. 6413.

[8] Ibid., p. 6412.

[9] Ibid., p. 6414.

[10] Ibid., p. 6425.

[11] Ibid., p. 6427.

[12] Ibid., p. 6416.

[13] Ibid., p. 6419.

[14] Ibid., p. 6419.

[15] Ibid., p. 6419.

[16] Ibid., p. 6419.

[17] Ibid., p. 6419.

[18] Ibid., p. 6421.

[19] Ibid., p. 6422.

[20] Ibid., p. 6422.

[21] Ibid., p. 6422.

[22] Ibid., p. 6422.

[23] Ibid., p. 6423.

[24] Ibid., p. 6423.

[25] Ibid., p. 6423.

[26] Ibid., p. 6426.

[27] Ibid., p. 6426.

[28] Ibid., p. 6427.

[29] Ibid., p. 6327.

[30] Ibid., p. 6427.

[31] XIAO, F. (2009). Synthesis and structural investigations of pyridine-based aromatic foldamers.

[32] Ibid., p. 4.

[33] Ibid., p. 4.

[34] Ibid., p. 4.

[35] Ibid., p. 4.

[36] Ibid., p. 7.

[37] Ibid., p. 8.

[38] Ibid., p. 7.

[39] Ibid., p. 7.

[40] Ibid., p. 7.

[41] Ibid., p. 7.

[42] Ibid., p. 7.

[43] Ibid., p. 8.

[44] Ibid., p. 8.

[45] Ibid., p. 9.

[46] Ibid., p. 9.

[47] Ibid., p. 9.

[48] Ibid., p. 10.

[49] Ibid., p. 10.

[50] Ibid., p. 10.

[51] Ibid., p. 10.

[52] Ibid., p. 11.

[53] Ibid., p. 12.

[54] Ibid., p. 12.

[55] Ibid., p. 12.

[56] Ibid., p. 12.

[57] Ibid., p. 12.

[58] Ibid., p. 13.

[59] Ibid., p. 13.

[60] Ibid., p. 14.

[61] Ibid., p. 14.

[62] Ibid., p. 14.

[63] Ibid., p. 15.

[64] Ibid., p. 15.

[65] Ibid., p. 15.

[66] Cortese, F., (2013). Concepts for Functional Replication of Biological Neurons. The Rational Argumentator. Access: http://www.rationalargumentator.com/index/blog/2013/05/concepts-functional-replication/

[67] Cortese, F., (2013). Gradual Neuron Replacement for the Preservation of Subjective-Continuity. The Rational Argumentator. Access: http://www.rationalargumentator.com/index/blog/2013/05/gradual-neuron-replacement/

[68] Cortese, F., (2013). Wireless Synapses, Artificial Plasticity, and Neuromodulation. The Rational Argumentator. Access: http://www.rationalargumentator.com/index/blog/2013/05/wireless-synapses/

[69] Freitas Jr., R., (1998). “Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell”. Artificial Cells, Blood Substitutes, and Immobil. Biotech. (26): 411–430. Access: http://www.ncbi.nlm.nih.gov/pubmed/9663339

This essay was also published by the Institute for Ethics & Emerging Technologies and by Transhumanity under the title “Is Price Performance the Wrong Measure for a Coming Intelligence Explosion?”.

Introduction

Most thinkers speculating on the coming of an intelligence explosion (whether via Artificial-General-Intelligence or Whole-Brain-Emulation/uploading), such as Ray Kurzweil [1] and Hans Moravec [2], typically use computational price performance as the best measure for an impending intelligence explosion (e.g. Kurzweil’s measure is when enough processing power to satisfy his estimates for basic processing power required to simulate the human brain costs $1,000). However, I think a lurking assumption lies here: that it won’t be much of an explosion unless available to the average person. I present a scenario below that may indicate that the imminence of a coming intelligence-explosion is more impacted by basic processing speed – or instructions per second (ISP), regardless of cost or resource requirements per unit of computation, than it is by computational price performance. This scenario also yields some additional, counter-intuitive conclusions, such as that it may be easier (for a given amount of “effort” or funding) to implement WBE+AGI than it would be to implement AGI alone – or rather that using WBE as a mediator of an increase in the rate of progress in AGI may yield an AGI faster or more efficiently per unit of effort or funding than it would be to implement AGI directly.

Loaded Uploads:

Petascale supercomputers in existence today exceed the processing-power requirements estimated by Kurzweil, Moravec, and Storrs-Hall [3]. If a wealthy individual were uploaded onto an petascale supercomputer today, they would have the same computational resources as the average person would eventually have in 2019 according to Kurzweil’s figures, when computational processing power equal to the human brain, which he estimates at 20 quadrillion calculations per second. While we may not yet have the necessary software to emulate a full human nervous system, the bottleneck for being able to do so is progress in the field or neurobiology rather than software performance in general. What is important is that the raw processing power estimated by some has already been surpassed – and the possibility of creating an upload may not have to wait for drastic increases in computational price performance.

The rate of signal transmission in electronic computers has been estimated to be roughly 1 million times as fast as the signal transmission speed between neurons, which is limited to the rate of passive chemical diffusion. Since the rate of signal transmission equates with subjective perception of time, an upload would presumably experience the passing of time one million times faster than biological humans. If Yudkowsky’s observation [4] that this would be the equivalent to experiencing all of history since Socrates every 18 “real-time” hours is correct then such an emulation would experience 250 subjective years for every hour and 4 years a minute. A day would be equal to 6,000 years, a week would be equal to 1,750 years, and a month would be 75,000 years.

Moreover, these figures use the signal transmission speed of current, electronic paradigms of computation only, and thus the projected increase in signal-transmission speed brought about through the use of alternative computational paradigms, such as 3-dimensional and/or molecular circuitry or Drexler’s nanoscale rod-logic [5], can only be expected to increase such estimates of “subjective speed-up”.

The claim that the subjective perception of time and the “speed of thought” is a function of the signal-transmission speed of the medium or substrate instantiating such thought or facilitating such perception-of-time follows from the scientific-materialist (a.k.a. metaphysical-naturalist) claim that the mind is instantiated by the physical operations of the brain. Thought and perception of time (or the rate at which anything is perceived really) are experiential modalities that constitute a portion of the brain’s cumulative functional modalities. If the functional modalities of the brain are instantiated by the physical operations of the brain, then it follows that increasing the rate at which such physical operations occur would facilitate a corresponding increase in the rate at which such functional modalities would occur, and thus the rate at which the experiential modalities that form a subset of those functional modalities would likewise occur.

Petascale supercomputers have surpassed the rough estimates made by Kurzweil (20 petaflops, or 20 quadrillion calculations per second), Moravec (100,000 MIPS), and others. Most argue that we still need to wait for software improvements to catch up with hardware improvements. Others argue that even if we don’t understand how the operation of the brain’s individual components (e.g. neurons, neural clusters, etc.) converge to create the emergent phenomenon of mind – or even how such components converge so as to create the basic functional modalities of the brain that have nothing to do with subjective experience – we would still be able to create a viable upload. Nick Bostrom & Anders Sandberg, in their 2008 Whole Brain Emulation Roadmap [6] for instance, have argued that if we understand the operational dynamics of the brain’s low-level components, we can then computationally emulate such components and the emergent functional modalities of the brain and the experiential modalities of the mind will emerge therefrom.

Mind Uploading is (Largely) Independent of Software Performance:

Why is this important? Because if we don’t have to understand how the separate functions and operations of the brain’s low-level components converge so as to instantiate the higher-level functions and faculties of brain and mind, then we don’t need to wait for software improvements (or progress in methodological implementation) to catch up with hardware improvements. Note that for the purposes of this essay “software performance” will denote the efficacy of the “methodological implementation” of an AGI or Upload (i.e. designing the mind-in-question, regardless of hardware or “technological implementation” concerns) rather than how optimally software achieves its effect(s) for a given amount of available computational resources.

This means that if the estimates for sufficient processing power to emulate the human brain noted above are correct then a wealthy individual could hypothetically have himself destructively uploaded and run on contemporary petascale computers today, provided that we can simulate the operation of the brain at a small-enough scale (which is easier than simulating components at higher scales; simulating the accurate operation of a single neuron is less complex than simulating the accurate operation of higher-level neural networks or regions). While we may not be able to do so today due to lack of sufficient understanding of the operational dynamics of the brain’s low-level components (and whether the models we currently have are sufficient is an open question), we need wait only for insights from neurobiology, and not for drastic improvements in hardware (if the above estimates for required processing-power are correct), or in software/methodological-implementation.

If emulating the low-level components of the brain (e.g. neurons) will give rise to the emergent mind instantiated thereby, then we don’t actually need to know “how to build a mind” – whereas we do in the case of an AGI (which for the purposes of this essay shall denote AGI not based off of the human or mammalian nervous system, even though an upload might qualify as an AGI according to many people’s definitions). This follows naturally from the conjunction of the premises that 1. the system we wish to emulate already exists and 2. we can create (i.e. computationally emulate) the functional modalities of the whole system by only understanding the operation of the low level-level components’ functional modalities.

Thus, I argue that a wealthy upload who did this could conceivably accelerate the coming of an intelligence explosion by such a large degree that it could occur before computational price performance drops to a point where the basic processing power required for such an emulation is available for a widely-affordable price, say for $1,000 as in Kurzweil’s figures.

Such a scenario could make basic processing power, or Instructions-Per-Second, more indicative of an imminent intelligence explosion or hard take-off scenario than computational price performance.

If we can achieve human whole-brain-emulation even one week before we can achieve AGI (the cognitive architecture of which is not based off of the biological human nervous system) and this upload set to work on creating an AGI, then such an upload would have, according to the “subjective-speed-up” factors given above, 1,750 subjective years within which to succeed in designing and implementing an AGI, for every one real-time week normatively-biological AGI workers have to succeed.

The subjective-perception-of-time speed-up alone would be enough to greatly improve his/her ability to accelerate the coming of an intelligence explosion. Other features, like increased ease-of-self-modification and the ability to make as many copies of himself as he has processing power to allocate to, only increase his potential to accelerate the coming of an intelligence explosion.

This is not to say that we can run an emulation without any software at all. Of course we need software – but we may not need drastic improvements in software, or a reinventing of the wheel in software design

So why should we be able to simulate the human brain without understanding its operational dynamics in exhaustive detail? Are there any other processes or systems amenable to this circumstance, or is the brain unique in this regard?

There is a simple reason for why this claim seems intuitively doubtful. One would expect that we must understand the underlying principles of a given technology’s operation in in order to implement and maintain it. This is, after all, the case for all other technologies throughout the history of humanity. But the human brain is categorically different in this regard because it already exists.

If, for instance, we found a technology and wished to recreate it, we could do so by copying the arrangement of components. But in order to make any changes to it, or any variations on its basic structure or principals-of-operation, we would need to know how to build it, maintain it, and predictively model it with a fair amount of accuracy. In order to make any new changes, we need to know how such changes will affect the operation of the other components – and this requires being able to predictively model the system. If we don’t understand how changes will impact the rest of the system, then we have no reliable means of implementing any changes.

Thus, if we seek only to copy the brain, and not to modify or augment it in any substantial way, the it is wholly unique in the fact that we don’t need to reverse engineer it’s higher-level operations in order to instantiate it.

This approach should be considered a category separate from reverse-engineering. It would indeed involve a form of reverse-engineering on the scale we seek to simulate (e.g. neurons or neural clusters), but it lacks many features of reverse-engineering by virtue of the fact that we don’t need to understand its operation on all scales. For instance, knowing the operational dynamics of the atoms composing a larger system (e.g. any mechanical system) wouldn’t necessarily translate into knowledge of the operational dynamics of its higher-scale components. The approach mind-uploading falls under, where reverse-engineering at a small enough scale is sufficient to recreate it, provided that we don’t seek to modify its internal operation in any significant way, I will call Blind Replication.

Blind replication disallows any sort of significant modifications, because if one doesn’t understand how processes affect other processes within the system then they have no way of knowing how modifications will change other processes and thus the emergent function(s) of the system. We wouldn’t have a way to translate functional/optimization objectives into changes made to the system that would facilitate them. There are also liability issues, in that one wouldn’t know how the system would work in different circumstances, and would have no guarantee of such systems’ safety or their vicarious consequences. So government couldn’t be sure of the reliability of systems made via Blind Replication, and corporations would have no way of optimizing such systems so as to increase a given performance metric in an effort to increase profits, and indeed would be unable to obtain intellectual property rights over a technology that they cannot describe the inner-workings or “operational dynamics” of.

However, government and private industry wouldn’t be motivated by such factors (that is, ability to optimize certain performance measures, or to ascertain liability) in the first place, if they were to attempt something like this – since they wouldn’t be selling it. The only reason I foresee government or industry being interested in attempting this is if a foreign nation or competitor, respectively, initiated such a project, in which case they might attempt it simply to stay competitive in the case of industry and on equal militaristic defensive/offensive footing in the case of government. But the fact that optimization-of-performance-measures and clear liabilities don’t apply to Blind Replication means that a wealthy individual would be more likely to attempt this, because government and industry have much more to lose in terms of liability, were someone to find out.

Could Upload+AGI be easier to implement than AGI alone?

This means that the creation of an intelligence with a subjective perception of time significantly greater than unmodified humans (what might be called Ultra-Fast Intelligence) may be more likely to occur via an upload, rather than an AGI, because the creation of an AGI is largely determined by increases in both computational processing and software performance/capability, whereas the creation of an upload may be determined by-and-large by processing-power and thus remain largely independent of the need for significant improvements in software performance or “methodological implementation”

If the premise that such an upload could significantly accelerate a coming intelligence explosion (whether by using his/her comparative advantages to recursively self-modify his/herself, to accelerate innovation and R&D in computational hardware and/or software, or to create a recursively-self-improving AGI) is taken as true, it follows that even the coming of an AGI-mediated intelligence explosion specifically, despite being impacted by software improvements as well as computational processing power, may be more impacted by basic processing power (e.g. IPS) than by computational price performance — and may be more determined by computational processing power than by processing power + software improvements. This is only because uploading is likely to be largely independent of increases in software (i.e. methodological as opposed to technological) performance. Moreover, development in AGI may proceed faster via the vicarious method outlined here – namely having an upload or team of uploads work on the software and/or hardware improvements that AGI relies on – than by directly working on such improvements in “real-time” physicality.

Virtual Advantage:

The increase in subjective perception of time alone (if Yudkowsky’s estimate is correct, a ratio of 250 subjective years for every “real-time” hour) gives him/her a massive advantage. It also would likely allow them to counter-act and negate any attempts made from “real-time” physicality to stop, slow or otherwise deter them.

There is another feature of virtual embodiment that could increase the upload’s ability to accelerate such developments. Neural modification, with which he could optimize his current functional modalities (e.g. what we coarsely call “intelligence”) or increase the metrics underlying them, thus amplifying his existing skills and cognitive faculties (as in Intelligence Amplification or IA), as well as creating categorically new functional modalities, is much easier from within virtual embodiment than it would be in physicality. In virtual embodiment, all such modifications become a methodological, rather than technological, problem. To enact such changes in a physically-embodied nervous system would require designing a system to implement those changes, and actually implementing them according to plan. To enact such changes in a virtually-embodied nervous system requires only a re-organization or re-writing of information. Moreover, in virtual embodiment, any changes could be made, and reversed, whereas in physical embodiment reversing such changes would require, again, designing a method and system of implementing such “reversal-changes” in physicality (thereby necessitating a whole host of other technologies and methodologies) – and if those changes made further unexpected changes, and we can’t easily reverse them, then we may create an infinite regress of changes, wherein changes made to reverse a given modification in turn creates more changes, that in turn need to be reversed, ad infinitum.

Thus self-modification (and especially recursive self-modification), towards the purpose of intelligence amplification into Ultraintelligence [7] in easier (i.e. necessitating a smaller technological and methodological infrastructure – that is, the required host of methods and technologies needed by something – and thus less cost as well) in virtual embodiment than in physical embodiment.

These recursive modifications not only further maximize the upload’s ability to think of ways to accelerate the coming of an intelligence explosion, but also maximize his ability to further self-modify towards that very objective (thus creating the positive feedback loop critical for I.J Good’s intelligence explosion hypothesis) – or in other words maximize his ability to maximize his general ability in anything.

But to what extent is the ability to self-modify hampered by the critical feature of Blind Replication mentioned above – namely, the inability to modify and optimize various performance measures by virtue of the fact that we can’t predictively model the operational dynamics of the system-in-question? Well, an upload could copy himself, enact any modifications, and see the results – or indeed, make a copy to perform this change-and-check procedure. If the inability to predictively model a system made through the “Blind Replication” method does indeed problematize the upload’s ability to self-modify, it would still be much easier to work towards being able to predictively model it, via this iterative change-and-check method, due to both the subjective-perception-of-time speedup and the ability to make copies of himself.

It is worth noting that it might be possible to predictively model (and thus make reliable or stable changes to) the operation of neurons, without being able to model how this scales up to the operational dynamics of the higher-level neural regions. Thus modifying, increasing or optimizing existing functional modalities (i.e. increasing synaptic density in neurons, or increasing the range of usable neurotransmitters — thus increasing the potential information density in a given signal or synaptic-transmission) may be significantly easier than creating categorically new functional modalities.

Increasing the Imminence of an Intelligent Explosion:

So what ways could the upload use his/her new advantages and abilities to actually accelerate the coming of an intelligence explosion? He could apply his abilities to self-modification, or to the creation of a Seed-AI (or more technically a recursively self-modifying AI).

He could also accelerate its imminence vicariously by working on accelerating the foundational technologies and methodologies (or in other words the technological and methodological infrastructure of an intelligence explosion) that largely determine its imminence. He could apply his new abilities and advantages to designing better computational paradigms, new methodologies within existing paradigms (e.g. non-Von-Neumann architectures still within the paradigm of electrical computation), or to differential technological development in “real-time” physicality towards such aims – e.g. finding an innovative means of allocating assets and resources (i.e. capital) to R&D for new computational paradigms, or optimizing current computational paradigms.

Thus there are numerous methods of indirectly increasing the imminence (or the likelihood of imminence within a certain time-range, which is a measure with less ambiguity) of a coming intelligence explosion – and many new ones no doubt that will be realized only once such an upload acquires such advantages and abilities.

Intimations of Implications:

So… Is this good news or bad news? Like much else in this increasingly future-dominated age, the consequences of this scenario remain morally ambiguous. It could be both bad and good news. But the answer to this question is independent of the premises – that is, two can agree on the viability of the premises and reasoning of the scenario, while drawing opposite conclusions in terms of whether it is good or bad news.

People who subscribe to the “Friendly AI” camp of AI-related existential risk will be at once hopeful and dismayed. While it might increase their ability to create their AGI (or more technically their Coherent-Extrapolated-Volition Engine [8]), thus decreasing the chances of an “unfriendly” AI being created in the interim, they will also be dismayed by the fact that it may include (but not necessitate) a recursively-modifying intelligence, in this case an upload, to be created prior to the creation of their own AGI – which is the very problem they are trying to mitigate in the first place.

Those who, like me, see a distributed intelligence explosion (in which all intelligences are allowed to recursively self-modify at the same rate – thus preserving “power” equality, or at least mitigating “power” disparity [where power is defined as the capacity to affect change in the world or society] – and in which any intelligence increasing their capably at a faster rate than all others is disallowed) as a better method of mitigating the existential risk entailed by an intelligence explosion will also be dismayed. This scenario would allow one single person to essentially have the power to determine the fate of humanity – due to his massively increased “capability” or “power” – which is the very feature (capability disparity/inequality) that the “distributed intelligence explosion” camp of AI-related existential risk seeks to minimize.

On the other hand, those who see great potential in an intelligence explosion to help mitigate existing problems afflicting humanity – e.g. death, disease, societal instability, etc. – will be hopeful because the scenario could decrease the time it takes to implement an intelligence explosion.

I for one think that it is highly likely that the advantages proffered by accelerating the coming of an intelligence explosion fail to supersede the disadvantages incurred by the increase existential risk it would entail. That is, I think that the increase in existential risk brought about by putting so much “power” or “capability-to-affect-change” in the (hands?) one intelligence outweighs the decrease in existential risk brought about by the accelerated creation of an Existential-Risk-Mitigating A(G)I.

Conclusion:

Thus, the scenario presented above yields some interesting and counter-intuitive conclusions:

  1. How imminent an intelligence explosion is, or how likely it is to occur within a given time-frame, may be more determined by basic processing power than by computational price performance, which is a measure of basic processing power per unit of cost. This is because as soon as we have enough processing power to emulate a human nervous system, provided we have sufficient software to emulate the lower level neural components giving rise to the higher-level human mind, then the increase in the rate of thought and subjective perception of time made available to that emulation could very well allow it to design and implement an AGI before computational price performance increases by a large enough factor to make the processing power necessary for that AGI’s implementation available for a widely-affordable cost. This conclusion is independent of any specific estimates of how long the successful computational emulation of a human nervous system will take to achieve. It relies solely on the premise that the successful computational emulation of the human mind can be achieved faster than the successful implementation of an AGI whose design is not based upon the cognitive architecture of the human nervous system. I have outlined various reasons why we might expect this to be the case. This would be true even if uploading could only be achieved faster than AGI (given an equal amount of funding or “effort”) by a seemingly-negligible amount of time, like one week, due to the massive increase in speed of thought and the rate of subjective perception of time that would then be available to such an upload.
  2. The creation of an upload may be relatively independent of software performance/capability (which is not to say that we don’t need any software, because we do, but rather that we don’t need significant increases in software performance or improvements in methodological implementation – i.e. how we actually design a mind, rather than the substrate it is instantiated by – which we do need in order to implement an AGI and which we would need for WBE, were the system we seek to emulate not already in existence) and may in fact be largely determined by processing power or computational performance/capability alone, whereas AGI is dependent on increases in both computational performance and software performance or fundamental progress in methodological implementation.
    • If this second conclusion is true, it means that an upload may be possible quite soon considering the fact that we’ve passed the basic estimates for processing requirements given by Kurzweil, Moravec and Storrs-Hall, provided we can emulate the low-level neural regions of the brain with high predictive accuracy (and provided the claim that instantiating such low-level components will vicariously instantiate the emergent human mind, without out needing to really understand how such components functionally-converge to do so, proves true), whereas AGI may still have to wait for fundamental improvements to methodological implementation or “software performance”
    • Thus it may be easier to create an AGI by first creating an upload to accelerate the development of that AGI’s creation, than it would be to work on the development of an AGI directly. Upload+AGI may actually be easier to implement than AGI alone is!

franco 2 essay 5

References:

[1] Kurzweil, R, 2005. The Singularity is Near. Penguin Books.

[2] Moravec, H, 1997. When will computer hardware match the human brain?. Journal of Evolution and Technology, [Online]. 1(1). Available at: http://www.jetpress.org/volume1/moravec.htm [Accessed 01 March 2013].

[3] Hall, J (2006) “Runaway Artificial Intelligence?” Available at: http://www.kurzweilai.net/runaway-artificial-intelligence [Accessed: 01 March 2013]

[4] Adam Ford. (2011). Yudkowsky vs Hanson on the Intelligence Explosion — Jane Street Debate 2011 . [Online Video]. August 10, 2011. Available at: http://www.youtube.com/watch?v=m_R5Z4_khNw [Accessed: 01 March 2013].

[5] Drexler, K.E, (1989). MOLECULAR MANIPULATION and MOLECULAR COMPUTATION. In NanoCon Northwest regional nanotechnology conference. Seattle, Washington, February 14–17. NANOCON. 2. http://www.halcyon.com/nanojbl/NanoConProc/nanocon2.html [Accessed 01 March 2013]

[6] Sandberg, A. & Bostrom, N. (2008). Whole Brain Emulation: A Roadmap, Technical Report #2008–3. http://www.philosophy.ox.ac.uk/__data/assets/pdf_file/0019/3853/brain-emulation-roadmap-report.pdf [Accessed 01 March 2013]

[7] Good, I.J. (1965). Speculations Concerning the First Ultraintelligent Machine. Advances in Computers.

[8] Yudkowsky, E. (2004). Coherent Extrapolated Volition. The Singularity Institute.

boy_bubble2

There is a real power in the act of physically moving. In so doing, each and every morning I can escape the cacophonous curse of the ubiquitous ESPN in the gym locker room. I toss my bag in my locker and immediately escape to the pure, perfect, custom designed peace of my iPod’s audio world. I also well remember the glorious day I moved away from the hopelessness of my roommate’s awful sub-human, sub-slum stench and into my own private apartment. The universe changed miraculously overnight. I think you can get my drift. The simple act of moving itself can be powerfully transformational. Sometimes, there is not enough bleach and not enough distance between the walls to have the desired effect. Physically moving is quite often the only answer.

As we consider transhumanist societies, such transitional power is certainly the result by many magnitudes. My team has been engaged in developing the first permanent human undersea settlement over the past few decades. In this process we have had the distinct advantage of planning profoundly transhumanist advances specifically because of the advantageous context of relative community isolation. Further we have the benefit of deriving change as a community necessity — as a psychological and cultural imperative for this degree of advanced cultural evolution. It is a real kind of powerfully driven societal punctuated equilibrium that can be realized in few other ways.

In moving into the oceans, the submarine environment itself immediately establishes the boundary between the new, evolving culture and the old. While the effect and actual meaning of this boundary is almost always overrated, it is nonetheless a real boundary layer that allows the new culture to flourish sans the interferences or contamination from the old. Trying to accomplish transhumanist goals while culturally embedded is far more difficult and far less persuasive to those who must undergo dramatic change and for the transformation to actually take hold and survive generationally. But in a new, rather isolated environment, the pressure to evolve and integrate permanent change is not only easier, it is rather expected as a part of the reasonable process of establishment.

In one of our most powerful spin-offs back to the land-dwellers (LDs), our culture will begin on day one as a ‘waste-free culture’. It is an imperative and therefore a technological design feature. It is a value system. It is codified. It is a defining element of our new culture. It is also radically transhumanist. In our society, we teach this to one another and to our children, as well as every subsequent generation. In our undersea culture we have a process called ‘resource recovery’, since every product of every process is a resource to be utilized in the next round of community life cycle processing. Hence even the vilest sewage is just a part of the carbon cycle for the next round of our life support system engineering. Nothing is to be ‘wasted’. Nothing is to be ‘cast off’. We cannot afford ‘waste’ of any kind, hence waste will cease to exist as a concept. Everything is a resource. The life of the next cycle depends on the successful re-integration of each preceding cycle. The future life and wellbeing of the colony directly depends on the successful implementation of the conservation of resources and in turn the preservation of the natural health of its immediate environment in just this fashion.

Such advancement would be most difficult to engineer in a land-dweller community. The first problem would be simple re-education and the most elementary expectations. The next hurdle would be the re-engineering of every process that the LDs now identify as ‘waste processing’, ‘waste storage’, ‘waste distribution’ etc. Sadly, much of the LD’s unprocessed and unstabilized product is dumped into our ocean environment! But in the simple act of moving the same people to a new social structure, the impossible becomes surprisingly straightforward and even easy to implement. The difference and the power were always implicit in the move itself. The transhumanist ideal seems much better framed in this context when one considers that this is only one of countless examples of building new societies that are cleanly separated from the old.

It is certain to engender arguments to the contrary, I am sure. For how often is the rare opportunity available to move into a new cultural paradigm cleanly distinct from its predecessor? Certainly then the transhumanist concept must be able to rely on in situ prototypes that must be ultimately successful for the successful evolution of the culture. I have no argument with this, except to emphasize the intrinsic power in clean cultural separation as described in this example.

Obviously the ocean settlement is only one prototype. Space settlements and surface based seasteading are other examples to consider. The fact is clear, transhumanist cultures will always and quite easily develop in the new isolated human communities that are about to flourish in the most unexpected of places.

_________________________________________
Dennis Chamberland is the Expeditions Leader for the Atlantica Expeditions, where others may participate. Dennis is also a writer, the author of the book, Undersea Colonies and others, where many of these concepts are discussed in greater detail.

Congratulations Drs. Musha, Pinheiro & Valone on their soon to be published new book.

For those who are interested T. Musha, M.J. Pinheiro and T. Valone (Advanced Science Technology Research Organization, Yokohama, Japan, and others) have a new book that will be published soon:

Book Description: The purpose in writing this book is to give an historical overview of a new challenging field of research, and equip the readers with the mathematical basis of gravitoelectromagnetic theories and their applications to advanced science and technology.
The first chapter introduces the historical background of electrogravity, especially on the Biefeld-Brown effect. The second chapter gives several explanations on the Biefeld-Brown effect and other related phenomena, with a concern on the Einstein’s Unified Field Theory of Gravitation and electromagnetism and gravitational anomaly induced by the massive electrostatic charges of planets. The third chapter is concerned with the electrogravitic effect related to the zero point energy fluctuation in the vacuum, introduced from the standpoint of quantum electrodynamics.
The fourth chapter discusses other electromagnetic gravity control devices including the Heim theory and their applications for space flight. The fifth chapter has shown that the Abraham force is the analogue of the Magnus force, and it thus represents the formation of vortex structures, of electromagnetic nature, in the physical vacuum: the electromagnetotoroid which can generate gravitational field. The sixth chapter deals with the plasma theory of the Universe and the role played by the gravitoelectromagnetic forces generated by the plasma permeating the space between planets. And the last chapter shows the application on advanced aviation systems and future prospects of these technologies.
This is a textbook written for both researchers and professional scientists, which provides the mathematical basis for readers to introduce the basic concept of gravitoelectromagnetic theories and also discusses their application to advanced science and technologies. (Imprint: Novinka)
Publisher’s link:
——————————————Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

Mechanics of Gravity Modification

Posted in defense, education, engineering, general relativity, military, particle physics, philosophy, physics, policy, scientific freedom, spaceTagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment on Mechanics of Gravity Modification

The Rocky Mountain chapter of the American Institute of Astronautics & Aeronautics (AIAA) will be having their 2nd Annual Technical Symposium, October 25 2013. The call for papers ends May 31 2013. I would recommend submitting your papers. This conference gives you the opportunity to put your work together in a cohesive manner, get feedback and keep your copyrights, before you write your final papers for journals you will submitting to. A great way to polish your papers.

Here is the link to the call for papers: http://www.iseti.us/pdf/RMAIAA_Call_For_Abstracts_2013-0507.pdf

Here is the link to the conference: http://www.iseti.us/pdf/RMAIAA_General_Advert_2013-0507.pdf

I’ll be presenting 2 papers. The first is a slightly revised version of the presentation I gave at the APS April 2013 conference here in Denver (http://www.iseti.us/WhitePapers/APS2013/Solomon-APS-April(2013-04-15).pdf). The second is titled ‘The Mechanics of Gravity Modification’.

Fabrizio Brocca from Italy wanted to know more about the Ni field shape for a rotating-spinning-disc. Finally, a question from someone who has read my book. This is not easy to explain over email, so I’m presenting the answers to his questions at this conference, as ‘The Mechanics of Gravity Modification’. That way I can reach many more people. Hope you can attend, read the book, and have your questions ready. I’m looking forward to your questions. This is going to be a lively discussion, and we can adjourn off conference.

My intention for using this forum to explain some of my research is straight forward. There will be (if I am correct) more than 100 aerospace companies in attendance, and I am expecting many of them will return to set up engineering programs to reproduce, test and explore gravity modification as a working technology.

Fabrizio Brocca I hope you can make it to Colorado this October, too.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

Need for a New Theory on Gravity

Posted in defense, engineering, fun, general relativity, particle physics, physics, scientific freedom, spaceTagged , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , | Leave a Comment on Need for a New Theory on Gravity

I had a great time at APS 2013 held April 13 — 16, 2013. I presented my paper “Empirical Evidence Suggest A Different Gravitational Theory” in track T10, Tuesday afternoon. A copy of the slides is available at this link.

http://www.iseti.us/WhitePapers/APS2013/Solomon-APS-April(2013-04-15).pdf

Have fun.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

The APS April Meeting 2013, Vol. 58 #4 will be held Saturday–Tuesday, April 13–16, 2013; Denver, Colorado.

I am very pleased to announce that my abstract was accepted and I will be presenting “Empirical Evidence Suggest A Need For A Different Gravitational Theory” at this prestigious conference.

For those of you who can make it to Denver, April 13–16, and are interested in alternative gravitational theories, lets meet up.

I am especially interested in physicists and engineers who have the funding to test gravity modification technologies, proposed in my book An Introduction to Gravity Modification.

** Note, APS is the publisher of the most prestigious physics journal in the world, Physical Review Letters. If you remember Robert Nemiroff published his ground breaking findings that quantum foam cannot exists, 3 photons and 7-billion year old gamma ray burst in the Physical Review Letters.

——————————————

Benjamin T Solomon is the author of the 12-year study An Introduction to Gravity Modification

FUKUSHIMA.MAKES.JAPAN.DO.MORE.ROBOTS
Fukushima’s Second Anniversary…

Two years ago the international robot dorkosphere was stunned when, in the aftermath of the Tohoku Earthquake and Tsunami Disaster, there were no domestically produced robots in Japan ready to jump into the death-to-all-mammals radiation contamination situation at the down-melting Fukushima Daiichi nuclear power plant.

…and Japan is Hard at Work.
Suffice it to say, when Japan finds out its robots aren’t good enough — JAPAN RESPONDS! For more on how Japan has and is addressing the situation, have a jump on over to AkihabaraNews.com.

Oh, and here’s some awesome stuff sourced from the TheRobotReport.com:

Larger Image
- PDF With Links

1. Thou shalt first guard the Earth and preserve humanity.

Impact deflection and survival colonies hold the moral high ground above all other calls on public funds.

2. Thou shalt go into space with heavy lift rockets with hydrogen upper stages and not go extinct.

The human race can only go in one of two directions; space or extinction- right now we are an endangered species.

3. Thou shalt use the power of the atom to live on other worlds.

Nuclear energy is to the space age as steam was to the industrial revolution; chemical propulsion is useless for interplanetary travel and there is no solar energy in the outer solar system.

4. Thou shalt use nuclear weapons to travel through space.

Physical matter can barely contain chemical reactions; the only way to effectively harness nuclear energy to propel spaceships is to avoid containment problems completely- with bombs.

5. Thou shalt gather ice on the Moon as a shield and travel outbound.

The Moon has water for the minimum 14 foot thick radiation shield and is a safe place to light off a bomb propulsion system; it is the starting gate.

6. Thou shalt spin thy spaceships and rings and hollow spheres to create gravity and thrive.

Humankind requires Earth gravity and radiation to travel for years through space; anything less is a guarantee of failure.

7. Thou shalt harvest the Sun on the Moon and use the energy to power the Earth and propel spaceships with mighty beams.

8. Thou shalt freeze without damage the old and sick and revive them when a cure is found; only an indefinite lifespan will allow humankind to combine and survive. Only with this reprieve can we sleep and reach the stars.

9. Thou shalt build solar power stations in space hundreds of miles in diameter and with this power manufacture small black holes for starship engines.

10. Thou shalt build artificial intellects and with these beings escape the death of the universe and resurrect all who have died, joining all minds on a new plane.

I continue to survey the available technology applicable to spaceflight and there is little change.

The remarkable near impact and NEO on the same day seems to fly in the face of the experts quoting a probability of such coincidence being low on the scale of millenium. A recent exchange on a blog has given me the idea that perhaps crude is better. A much faster approach to a nuclear propelled spaceship might be more appropriate.

Unknown to the public there is such a thing as unobtanium. It carries the country name of my birth; Americium.

A certain form of Americium is ideal for a type of nuclear solid fuel rocket. Called a Fission Fragment Rocket, it is straight out of a 1950’s movie with massive thrust at the limit of human G-tolerance. Such a rocket produces large amounts of irradiated material and cannot be fired inside, near, or at the Earth’s magnetic field. The Moon is the place to assemble, test, and launch any nuclear mission.

Such Fission Fragment propelled spacecraft would resemble the original Tsolkovsky space train with a several hundred foot long slender skeleton mounting these one shot Americium boosters. The turn of the century deaf school master continues to predict.

Each lamp-shade-spherical thruster has a programmed design balancing the length and thrust of the burn. After being expended the boosters use a small secondary system to send them into an appropriate direction and probably equipped with small sensor packages, using the hot irradiated shell for an RTG. The Frame that served as a car of the space train transforms into a pair of satellite panels. Being more an artist than an *engineer, I find the monoplane configuration pleasing to the eye as well as being functional. These dozens and eventually thousands of dual purpose boosters would help form a space warning net.

The front of the space train is a large plastic sphere partially filled filled with water sent up from the surface of a a Robotic Lunar Polar Base. The Spaceship would split apart on a tether to generate artificial gravity with the lessening booster mass balanced by varying lengths of tether with an intermediate reactor mass.

These piloted impact threat interceptors would be manned by the United Nations Space Defense Force. All the Nuclear Powers would be represented.…..well, most of them. They would be capable of “fast missions” lasting only a month or at the most two months. They would be launched from underground silos on the Moon to deliver a nuclear weapon package towards an impact threat at the highest possible velocity and so the fastest intercept time. These ships would come back on a ballistic course with all their boosters expended to be rescued by recovery craft from the Moon upon return to the vicinity of Earth.

The key to this scenario is Americium 242. It is extremely expensive stuff. The only alternative is Nuclear Pulse Propulsion (NPP). The problem with bomb propulsion is the need to have a humungous mass for the most efficient size of bomb to react with.

The Logic Tree then splits again with two designs of bomb propelled ship; the “Orion” and the “Medusa.” The Orion is the original design using a metal plate and shock absorbing system. The Medusa is essentially a giant woven alloy parachute and tether system that replaces the plate with a much lighter “mega-sail.” In one of the few cases where compromise might bear fruit- the huge spinning ufo type disc, thousands of feet across, would serve quite well to explore, colonize, and intercept impact threats. Such a ship would require a couple decades to begin manufacture on the Moon.

Americium boosters could be built on earth and inserted into lunar orbit with Human Rated Heavy Lift Vehicles (SLS) and a mission launched well within a ten-year apollo type plan. But the Americium Infrastructure has to be available as a first step.

Would any of my hundreds of faithful followers be willing to assist me in circulating a petition?

*Actually I am neither an artist or an engineer- just a wannabe pulp writer in the mold of Edgar Rice Burroughs.