The Lifeboat community doesn’t need me to tell them that a growing number of scientists are dedicating their time and energy into research that could radically alter the human aging trajectory. As a result we could be on the verge of the end of aging. But from an anthropological and evolutionary perspective, humans have always had the desire to end aging. Most human culture groups on the planet did this by inventing some belief structure incorporating eternal consciousness. In my mind this is a logical consequence of A) realizing you are going to die and B) not knowing how to prevent that tragedy. So from that perspective, I wanted to create a video that contextualized the modern scientific belief in radical life extension with the religious/mythological beliefs of our ancestors.
The aim of this short essay is not to delve into philosophy, yet on some level it is un-avoidable when talking about Transhumanism. An important goal of this movement is the use of technology for the enhancement, uplifting and perhaps…the transcendence of the shortcomings of the human condition. Technology in general seems to be keeping pace and is in sync with both Moore’s law and Kurzweil’s law and his predictions.
Yet, there is an emerging strain of Transhumanists — propelled by radical ideology, and if left un-questioned might raise the specter of Eugenics, wreaking havoc and potentially inviting retaliation from the masses. The outcome being, the stymieing human transcendence. One can only hope that along with physical augmentation technology and advances in bio-tech, Eugenics will be a thing of the past.
Soon enough, at least IQ Augmentation technology will be within reach (cost-wise) of the common man — in the form of an on-demand, non-invasive, memory and intelligence augmentation device. So… will Google Glass or similar Intelligence Augmentation device, forever banish the argument for “intellectual” Eugenics? Read an article on 4 ways that Google glass makes us Transhuman.
The following passage from the novel “Memories with Maya” is relevant to that essay.
He took a file out and opened it in front of us. Each paper was watermarked ‘Classified’.
“This is a proposal to regulate and govern the ownership of Dirrogates,” he said.
Krish and I looked at each other, and then we were listening.
“I see it, and I’m sure you both do as well, the immense opportunity there is in licensing Dirrogates to work overseas right at clients’ premises. BPO two point zero like you’ve never seen,” he said. “Our country is a huge business outsourcing destination. Why not have actual Dirrogates working at the client’s facility where they can communicate with other human staff. — Memories with Maya
A little explanation: Dirrogates are Digital Surrogates in the novel. An avatar of a real person, driven by markerless performance capture hardware such as a Kinect-like depth camera. Full skeletal and facial tracking animates a person’s Digital Surrogate and the Dirrogate can be seen by a human wearing Augmented Reality visors. Thus a human (the Dirrogate operator) is able to “tele-travel” to any location on Earth, given its exact geo-coordinates.
At the chosen destination, another depth cam streams a live, real-time 3D model of the room/location so the Dirrogate (operator) can “see” live humans overlaid with a 3D mesh of themselves and a fitted video draped texture map. In essence — a live person cloaked in a Computer generated mesh created in real-time by the depth camera… idea-seeding for Kinect 2 hackers.
What would a Dirrogate look like in the real-world? The video below, is a crude (non photo-realistic) Dirrogate entering the real world.
Dirrogates, Immigration and Pseudo Minduploads:
This brings up the question: If we can have Digital Surrogates, or indeed, pseudo mind-uploads taking on 3D printed mechanical-surrogate bodies, what is the future for physical borders and Immigration policies?
Which brings us to a related point: Does one need a visa to visit the United States of America to “work”?
As an analogy, consider the pseudo mind-upload in the video below.
Does it matter if the boy is in the same town that the school is in or if he were in another country? Now consider the case of a customer service executive, or an immigrant from a third world country using a pseudo mind-upload to Tele-Travel to his work place in down-town New York — to “drive” a Google Taxi Cab until such a time that driverless car AI is perfected.
Most thinkers speculating on the coming of an intelligence explosion (whether via Artificial-General-Intelligence or Whole-Brain-Emulation/uploading), such as Ray Kurzweil [1] and Hans Moravec[2], typically use computational price performance as the best measure for an impending intelligence explosion (e.g. Kurzweil’s measure is when enough processing power to satisfy his estimates for basic processing power required to simulate the human brain costs $1,000). However, I think a lurking assumption lies here: that it won’t be much of an explosion unless available to the average person. I present a scenario below that may indicate that the imminence of a coming intelligence-explosion is more impacted by basic processing speed – or instructions per second (ISP), regardless of cost or resource requirements per unit of computation, than it is by computational price performance. This scenario also yields some additional, counter-intuitive conclusions, such as that it may be easier (for a given amount of “effort” or funding) to implement WBE+AGI than it would be to implement AGI alone – or rather that using WBE as a mediator of an increase in the rate of progress in AGI may yield an AGI faster or more efficiently per unit of effort or funding than it would be to implement AGI directly.
Loaded Uploads:
Petascale supercomputers in existence today exceed the processing-power requirements estimated by Kurzweil, Moravec, and Storrs-Hall[3]. If a wealthy individual were uploaded onto an petascale supercomputer today, they would have the same computational resources as the average person would eventually have in 2019 according to Kurzweil’s figures, when computational processing power equal to the human brain, which he estimates at 20 quadrillion calculations per second. While we may not yet have the necessary software to emulate a full human nervous system, the bottleneck for being able to do so is progress in the field or neurobiology rather than software performance in general. What is important is that the raw processing power estimated by some has already been surpassed – and the possibility of creating an upload may not have to wait for drastic increases in computational price performance.
The rate of signal transmission in electronic computers has been estimated to be roughly 1 million times as fast as the signal transmission speed between neurons, which is limited to the rate of passive chemical diffusion. Since the rate of signal transmission equates with subjective perception of time, an upload would presumably experience the passing of time one million times faster than biological humans. If Yudkowsky’s observation [4] that this would be the equivalent to experiencing all of history since Socrates every 18 “real-time” hours is correct then such an emulation would experience 250 subjective years for every hour and 4 years a minute. A day would be equal to 6,000 years, a week would be equal to 1,750 years, and a month would be 75,000 years.
Moreover, these figures use the signal transmission speed of current, electronic paradigms of computation only, and thus the projected increase in signal-transmission speed brought about through the use of alternative computational paradigms, such as 3-dimensional and/or molecular circuitry or Drexler’s nanoscale rod-logic [5], can only be expected to increase such estimates of “subjective speed-up”.
The claim that the subjective perception of time and the “speed of thought” is a function of the signal-transmission speed of the medium or substrate instantiating such thought or facilitating such perception-of-time follows from the scientific-materialist (a.k.a. metaphysical-naturalist) claim that the mind is instantiated by the physical operations of the brain. Thought and perception of time (or the rate at which anything is perceived really) are experiential modalities that constitute a portion of the brain’s cumulative functional modalities. If the functional modalities of the brain are instantiated by the physical operations of the brain, then it follows that increasing the rate at which such physical operations occur would facilitate a corresponding increase in the rate at which such functional modalities would occur, and thus the rate at which the experiential modalities that form a subset of those functional modalities would likewise occur.
Petascale supercomputers have surpassed the rough estimates made by Kurzweil (20 petaflops, or 20 quadrillion calculations per second), Moravec (100,000 MIPS), and others. Most argue that we still need to wait for software improvements to catch up with hardware improvements. Others argue that even if we don’t understand how the operation of the brain’s individual components (e.g. neurons, neural clusters, etc.) converge to create the emergent phenomenon of mind – or even how such components converge so as to create the basic functional modalities of the brain that have nothing to do with subjective experience – we would still be able to create a viable upload. Nick Bostrom & Anders Sandberg, in their 2008 Whole Brain Emulation Roadmap [6] for instance, have argued that if we understand the operational dynamics of the brain’s low-level components, we can then computationally emulate such components and the emergent functional modalities of the brain and the experiential modalities of the mind will emerge therefrom.
Mind Uploading is (Largely) Independent of Software Performance:
Why is this important? Because if we don’t have to understand how the separate functions and operations of the brain’s low-level components converge so as to instantiate the higher-level functions and faculties of brain and mind, then we don’t need to wait for software improvements (or progress in methodological implementation) to catch up with hardware improvements. Note that for the purposes of this essay “software performance” will denote the efficacy of the “methodological implementation” of an AGI or Upload (i.e. designing the mind-in-question, regardless of hardware or “technological implementation” concerns) rather than how optimally software achieves its effect(s) for a given amount of available computational resources.
This means that if the estimates for sufficient processing power to emulate the human brain noted above are correct then a wealthy individual could hypothetically have himself destructively uploaded and run on contemporary petascale computers today, provided that we can simulate the operation of the brain at a small-enough scale (which is easier than simulating components at higher scales; simulating the accurate operation of a single neuron is less complex than simulating the accurate operation of higher-level neural networks or regions). While we may not be able to do so today due to lack of sufficient understanding of the operational dynamics of the brain’s low-level components (and whether the models we currently have are sufficient is an open question), we need wait only for insights from neurobiology, and not for drastic improvements in hardware (if the above estimates for required processing-power are correct), or in software/methodological-implementation.
If emulating the low-level components of the brain (e.g. neurons) will give rise to the emergent mind instantiated thereby, then we don’t actually need to know “how to build a mind” – whereas we do in the case of an AGI (which for the purposes of this essay shall denote AGI not based off of the human or mammalian nervous system, even though an upload might qualify as an AGI according to many people’s definitions). This follows naturally from the conjunction of the premises that 1. the system we wish to emulate already exists and 2. we can create (i.e. computationally emulate) the functional modalities of the whole system by only understanding the operation of the low level-level components’ functional modalities.
Thus, I argue that a wealthy upload who did this could conceivably accelerate the coming of an intelligence explosion by such a large degree that it could occur before computational price performance drops to a point where the basic processing power required for such an emulation is available for a widely-affordable price, say for $1,000 as in Kurzweil’s figures.
Such a scenario could make basic processing power, or Instructions-Per-Second, more indicative of an imminent intelligence explosion or hard take-off scenario than computational price performance.
If we can achieve human whole-brain-emulation even one week before we can achieve AGI (the cognitive architecture of which is not based off of the biological human nervous system) and this upload set to work on creating an AGI, then such an upload would have, according to the “subjective-speed-up” factors given above, 1,750 subjective years within which to succeed in designing and implementing an AGI, for every one real-time week normatively-biological AGI workers have to succeed.
The subjective-perception-of-time speed-up alone would be enough to greatly improve his/her ability to accelerate the coming of an intelligence explosion. Other features, like increased ease-of-self-modification and the ability to make as many copies of himself as he has processing power to allocate to, only increase his potential to accelerate the coming of an intelligence explosion.
This is not to say that we can run an emulation without any software at all. Of course we need software – but we may not need drastic improvements in software, or a reinventing of the wheel in software design
So why should we be able to simulate the human brain without understanding its operational dynamics in exhaustive detail? Are there any other processes or systems amenable to this circumstance, or is the brain unique in this regard?
There is a simple reason for why this claim seems intuitively doubtful. One would expect that we must understand the underlying principles of a given technology’s operation in in order to implement and maintain it. This is, after all, the case for all other technologies throughout the history of humanity. But the human brain is categorically different in this regard because it already exists.
If, for instance, we found a technology and wished to recreate it, we could do so by copying the arrangement of components. But in order to make any changes to it, or any variations on its basic structure or principals-of-operation, we would need to know how to build it, maintain it, and predictively model it with a fair amount of accuracy. In order to make any new changes, we need to know how such changes will affect the operation of the other components – and this requires being able to predictively model the system. If we don’t understand how changes will impact the rest of the system, then we have no reliable means of implementing any changes.
Thus, if we seek only to copy the brain, and not to modify or augment it in any substantial way, the it is wholly unique in the fact that we don’t need to reverse engineer it’s higher-level operations in order to instantiate it.
This approach should be considered a category separate from reverse-engineering. It would indeed involve a form of reverse-engineering on the scale we seek to simulate (e.g. neurons or neural clusters), but it lacks many features of reverse-engineering by virtue of the fact that we don’t need to understand its operation on all scales. For instance, knowing the operational dynamics of the atoms composing a larger system (e.g. any mechanical system) wouldn’t necessarily translate into knowledge of the operational dynamics of its higher-scale components. The approach mind-uploading falls under, where reverse-engineering at a small enough scale is sufficient to recreate it, provided that we don’t seek to modify its internal operation in any significant way, I will call Blind Replication.
Blind replication disallows any sort of significant modifications, because if one doesn’t understand how processes affect other processes within the system then they have no way of knowing how modifications will change other processes and thus the emergent function(s) of the system. We wouldn’t have a way to translate functional/optimization objectives into changes made to the system that would facilitate them. There are also liability issues, in that one wouldn’t know how the system would work in different circumstances, and would have no guarantee of such systems’ safety or their vicarious consequences. So government couldn’t be sure of the reliability of systems made via Blind Replication, and corporations would have no way of optimizing such systems so as to increase a given performance metric in an effort to increase profits, and indeed would be unable to obtain intellectual property rights over a technology that they cannot describe the inner-workings or “operational dynamics” of.
However, government and private industry wouldn’t be motivated by such factors (that is, ability to optimize certain performance measures, or to ascertain liability) in the first place, if they were to attempt something like this – since they wouldn’t be selling it. The only reason I foresee government or industry being interested in attempting this is if a foreign nation or competitor, respectively, initiated such a project, in which case they might attempt it simply to stay competitive in the case of industry and on equal militaristic defensive/offensive footing in the case of government. But the fact that optimization-of-performance-measures and clear liabilities don’t apply to Blind Replication means that a wealthy individual would be more likely to attempt this, because government and industry have much more to lose in terms of liability, were someone to find out.
Could Upload+AGI be easier to implement than AGI alone?
This means that the creation of an intelligence with a subjective perception of time significantly greater than unmodified humans (what might be called Ultra-Fast Intelligence) may be more likely to occur via an upload, rather than an AGI, because the creation of an AGI is largely determined by increases in both computational processing and software performance/capability, whereas the creation of an upload may be determined by-and-large by processing-power and thus remain largely independent of the need for significant improvements in software performance or “methodological implementation”
If the premise that such an upload could significantly accelerate a coming intelligence explosion (whether by using his/her comparative advantages to recursively self-modify his/herself, to accelerate innovation and R&D in computational hardware and/or software, or to create a recursively-self-improving AGI) is taken as true, it follows that even the coming of an AGI-mediated intelligence explosion specifically, despite being impacted by software improvements as well as computational processing power, may be more impacted by basic processing power (e.g. IPS) than by computational price performance — and may be more determined by computational processing power than by processing power + software improvements. This is only because uploading is likely to be largely independent of increases in software (i.e. methodological as opposed to technological) performance. Moreover, development in AGI may proceed faster via the vicarious method outlined here – namely having an upload or team of uploads work on the software and/or hardware improvements that AGI relies on – than by directly working on such improvements in “real-time” physicality.
Virtual Advantage:
The increase in subjective perception of time alone (if Yudkowsky’s estimate is correct, a ratio of 250 subjective years for every “real-time” hour) gives him/her a massive advantage. It also would likely allow them to counter-act and negate any attempts made from “real-time” physicality to stop, slow or otherwise deter them.
There is another feature of virtual embodiment that could increase the upload’s ability to accelerate such developments. Neural modification, with which he could optimize his current functional modalities (e.g. what we coarsely call “intelligence”) or increase the metrics underlying them, thus amplifying his existing skills and cognitive faculties (as in Intelligence Amplification or IA), as well as creating categorically new functional modalities, is much easier from within virtual embodiment than it would be in physicality. In virtual embodiment, all such modifications become a methodological, rather than technological, problem. To enact such changes in a physically-embodied nervous system would require designing a system to implement those changes, and actually implementing them according to plan. To enact such changes in a virtually-embodied nervous system requires only a re-organization or re-writing of information. Moreover, in virtual embodiment, any changes could be made, and reversed, whereas in physical embodiment reversing such changes would require, again, designing a method and system of implementing such “reversal-changes” in physicality (thereby necessitating a whole host of other technologies and methodologies) – and if those changes made further unexpected changes, and we can’t easily reverse them, then we may create an infinite regress of changes, wherein changes made to reverse a given modification in turn creates more changes, that in turn need to be reversed, ad infinitum.
Thus self-modification (and especially recursive self-modification), towards the purpose of intelligence amplification into Ultraintelligence [7] in easier (i.e. necessitating a smaller technological and methodological infrastructure – that is, the required host of methods and technologies needed by something – and thus less cost as well) in virtual embodiment than in physical embodiment.
These recursive modifications not only further maximize the upload’s ability to think of ways to accelerate the coming of an intelligence explosion, but also maximize his ability to further self-modify towards that very objective (thus creating the positive feedback loop critical for I.J Good’s intelligence explosion hypothesis) – or in other words maximize his ability to maximize his general ability in anything.
But to what extent is the ability to self-modify hampered by the critical feature of Blind Replication mentioned above – namely, the inability to modify and optimize various performance measures by virtue of the fact that we can’t predictively model the operational dynamics of the system-in-question? Well, an upload could copy himself, enact any modifications, and see the results – or indeed, make a copy to perform this change-and-check procedure. If the inability to predictively model a system made through the “Blind Replication” method does indeed problematize the upload’s ability to self-modify, it would still be much easier to work towards being able to predictively model it, via this iterative change-and-check method, due to both the subjective-perception-of-time speedup and the ability to make copies of himself.
It is worth noting that it might be possible to predictively model (and thus make reliable or stable changes to) the operation of neurons, without being able to model how this scales up to the operational dynamics of the higher-level neural regions. Thus modifying, increasing or optimizing existing functional modalities (i.e. increasing synaptic density in neurons, or increasing the range of usable neurotransmitters — thus increasing the potential information density in a given signal or synaptic-transmission) may be significantly easier than creating categorically new functional modalities.
Increasing the Imminence of an Intelligent Explosion:
So what ways could the upload use his/her new advantages and abilities to actually accelerate the coming of an intelligence explosion? He could apply his abilities to self-modification, or to the creation of a Seed-AI (or more technically a recursively self-modifying AI).
He could also accelerate its imminence vicariously by working on accelerating the foundational technologies and methodologies (or in other words the technological and methodological infrastructure of an intelligence explosion) that largely determine its imminence. He could apply his new abilities and advantages to designing better computational paradigms, new methodologies within existing paradigms (e.g. non-Von-Neumann architectures still within the paradigm of electrical computation), or to differential technological development in “real-time” physicality towards such aims – e.g. finding an innovative means of allocating assets and resources (i.e. capital) to R&D for new computational paradigms, or optimizing current computational paradigms.
Thus there are numerous methods of indirectly increasing the imminence (or the likelihood of imminence within a certain time-range, which is a measure with less ambiguity) of a coming intelligence explosion – and many new ones no doubt that will be realized only once such an upload acquires such advantages and abilities.
Intimations of Implications:
So… Is this good news or bad news? Like much else in this increasingly future-dominated age, the consequences of this scenario remain morally ambiguous. It could be both bad and good news. But the answer to this question is independent of the premises – that is, two can agree on the viability of the premises and reasoning of the scenario, while drawing opposite conclusions in terms of whether it is good or bad news.
People who subscribe to the “Friendly AI” camp of AI-related existential risk will be at once hopeful and dismayed. While it might increase their ability to create their AGI (or more technically their Coherent-Extrapolated-Volition Engine [8]), thus decreasing the chances of an “unfriendly” AI being created in the interim, they will also be dismayed by the fact that it may include (but not necessitate) a recursively-modifying intelligence, in this case an upload, to be created prior to the creation of their own AGI – which is the very problem they are trying to mitigate in the first place.
Those who, like me, see a distributed intelligence explosion (in which all intelligences are allowed to recursively self-modify at the same rate – thus preserving “power” equality, or at least mitigating “power” disparity [where power is defined as the capacity to affect change in the world or society] – and in which any intelligence increasing their capably at a faster rate than all others is disallowed) as a better method of mitigating the existential risk entailed by an intelligence explosion will also be dismayed. This scenario would allow one single person to essentially have the power to determine the fate of humanity – due to his massively increased “capability” or “power” – which is the very feature (capability disparity/inequality) that the “distributed intelligence explosion” camp of AI-related existential risk seeks to minimize.
On the other hand, those who see great potential in an intelligence explosion to help mitigate existing problems afflicting humanity – e.g. death, disease, societal instability, etc. – will be hopeful because the scenario could decrease the time it takes to implement an intelligence explosion.
I for one think that it is highly likely that the advantages proffered by accelerating the coming of an intelligence explosion fail to supersede the disadvantages incurred by the increase existential risk it would entail. That is, I think that the increase in existential risk brought about by putting so much “power” or “capability-to-affect-change” in the (hands?) one intelligence outweighs the decrease in existential risk brought about by the accelerated creation of an Existential-Risk-Mitigating A(G)I.
Conclusion:
Thus, the scenario presented above yields some interesting and counter-intuitive conclusions:
How imminent an intelligence explosion is, or how likely it is to occur within a given time-frame, may be more determined by basic processing power than by computational price performance, which is a measure of basic processing power per unit of cost. This is because as soon as we have enough processing power to emulate a human nervous system, provided we have sufficient software to emulate the lower level neural components giving rise to the higher-level human mind, then the increase in the rate of thought and subjective perception of time made available to that emulation could very well allow it to design and implement an AGI before computational price performance increases by a large enough factor to make the processing power necessary for that AGI’s implementation available for a widely-affordable cost. This conclusion is independent of any specific estimates of how long the successful computational emulation of a human nervous system will take to achieve. It relies solely on the premise that the successful computational emulation of the human mind can be achieved faster than the successful implementation of an AGI whose design is not based upon the cognitive architecture of the human nervous system. I have outlined various reasons why we might expect this to be the case. This would be true even if uploading could only be achieved faster than AGI (given an equal amount of funding or “effort”) by a seemingly-negligible amount of time, like one week, due to the massive increase in speed of thought and the rate of subjective perception of time that would then be available to such an upload.
The creation of an upload may be relatively independent of software performance/capability (which is not to say that we don’t need any software, because we do, but rather that we don’t need significant increases in software performance or improvements in methodological implementation – i.e. how we actually design a mind, rather than the substrate it is instantiated by – which we do need in order to implement an AGI and which we would need for WBE, were the system we seek to emulate not already in existence) and may in fact be largely determined by processing power or computational performance/capability alone, whereas AGI is dependent on increases in both computational performance and software performance or fundamental progress in methodological implementation.
If this second conclusion is true, it means that an upload may be possible quite soon considering the fact that we’ve passed the basic estimates for processing requirements given by Kurzweil, Moravec and Storrs-Hall, provided we can emulate the low-level neural regions of the brain with high predictive accuracy (and provided the claim that instantiating such low-level components will vicariously instantiate the emergent human mind, without out needing to really understand how such components functionally-converge to do so, proves true), whereas AGI may still have to wait for fundamental improvements to methodological implementation or “software performance”
Thus it may be easier to create an AGI by first creating an upload to accelerate the development of that AGI’s creation, than it would be to work on the development of an AGI directly. Upload+AGI may actually be easier to implement than AGI alone is!
References:
[1] Kurzweil, R, 2005. The Singularity is Near. Penguin Books.
[2] Moravec, H, 1997. When will computer hardware match the human brain?. Journal of Evolution and Technology, [Online]. 1(1). Available at: http://www.jetpress.org/volume1/moravec.htm [Accessed 01 March 2013].
[4] Adam Ford. (2011). Yudkowsky vs Hanson on the Intelligence Explosion — Jane Street Debate 2011 . [Online Video]. August 10, 2011. Available at: http://www.youtube.com/watch?v=m_R5Z4_khNw [Accessed: 01 March 2013].
[5] Drexler, K.E, (1989). MOLECULAR MANIPULATION and MOLECULAR COMPUTATION. In NanoCon Northwest regional nanotechnology conference. Seattle, Washington, February 14–17. NANOCON. 2. http://www.halcyon.com/nanojbl/NanoConProc/nanocon2.html [Accessed 01 March 2013]
Transhumanism is all about the creative and ethical use of technology to better the human condition. Futurists, when discussing topics related to transhumanism, tend to look at nano-tech, bio-mechanical augmentation and related technology that, for the most part, is beyond the comprehension of lay-people.
If Transhumanism as a movement is to succeed, we have to explain it’s goals and benefits to humanity by addressing the common-man. After all, transhumanism is not the exclusive domain, nor restricted to the literati, academia or the rich. The more the common man realizes that (s)he is indeed already transhuman in a way — the lesser the taboo associated with the movement and the faster the law of accelerating returns will kick in, leading to eventual Tech Singularity.
Augmented Reality Visors: Enabling Transhumanism.
At the moment, Google Glass is not exactly within reach of the common man, even if he want’s to pay for it. It is “invite only”, which may be counter productive to furthering the Transhumanism cause. Now, to be fair, it may be because the device is still in beta testing, and once any bugs have been ironed out, the general public will benefit from both, a price drop and accessibility, because if Google does not do it, China will.
Google Glass: A Transhumanist’s Swiss Knife
Glass is the very definition of an augmented human, at least until the time hi-tech replaceable eye-balls, or non-obtrusive human augmentation technology becomes common-place. Glass is a good attempt at a wearable computing device that is practical. While it does lend a cyborg look to it’s wearer, future iterations will no doubt, bring the “Matrix” look back into vogue.
Above: Companies such as Vuzix, already have advanced AR capable visors that are aesthetically pleasing to look at and wear. So how is Google Glass (and similar AR visors) the Swiss Army Knife of Transhumanists?
Augmented Human Memory:
Wearing glass, allows a Transhuman to offload his/her memory to glass storage. Everyday examples follow…
- Park your car in a multi-story parking lot, step back a few steps and blink your eyes once. Instant photographic memory of the location via Glass’s wink activated snapshot feature.
- Visited a place once and don’t remember? Call on your “expanded” memory to playback a video recording of the path taken, or display a GPS powered visual overlay in your field of view.
Previously, this was done via a cellphone. In both cases, one is already Transhuman. This is what the common man needs to be made aware of and there will be less of a stigma attached to: The World’s most dangerous idea.
Life Saver — “Glass Angel”
Every one is said to have a “Guardian Angel” watching over them, yet an app named “Glass Angel” would be an apt name for a collection of potentially life saving modules that could run on Google Glass.
- CPR Assist: How many people can honestly say they know CPR? or even the Heimlich maneuver? Crucial moments can be saved when access to such knowledge is available… while freeing up our hands to assist the person in distress. In future iterations of Google glass (glass v2.0?) if true augmented reality capability is provided, a CGI human skeleton can be overlaid on the live patient, giving visual cues to further assist in such kinds of situations.
- Driver Safety: There are some states in the US looking at banning the use of Google Glass while driving. Yet, it is interesting to note that Glass could be that Guardian Angel watching over a driver who might nod off at the wheel after a long day at work. (DUI is not an excuse however to use Glass). The various sensors can monitor for tilt of head and sound an alarm, or even recognize unusual behavior of the wearer by analyzing and tracking the live video feed coming in through the camera…sounding an alarm to warn the wearer.
Augmented Intelligence — or — Amplified Intelligence:
How many times a day do we rely on auto-spell or Google’s auto correct to pop up and say “Did you mean” to warn us of spelling errors or even context errors? How many times have we blindly trusted Google to go ahead and auto-correct for us? While it can be argued that dependence on technology is actually dulling our brains, it is an un-arguable fact that over the coming years, grammar, multi-lingual communication, and more advanced forms of intelligence augmentation will make technology such as Google Glass and it’s successors, indispensable.
Possibly, the Singularity is not all that far away… If the Singularity is the point when Technology overtakes human intelligence… I see it as the point when human intelligence regresses to meet technology, mid-way.
On a more serious note: Should we be alarmed at our increasing dependence on Augmented Intelligence? or should we think of it as simply a storage and retrieval system.
If a lecturer on-stage, addressing a gathering of intellectuals, uses his eyeballs to scroll up a list of synonyms in real time on his Google glass display, to use a more succinct word or phrase when making a point, does that make him sound more intelligent?… how about if he punctuates the point by calling up the german translation of the phrase?
These are questions that I leave open to you…
Digital Bread Crumbs- Quantum Archeology and Immortality.
Every time we share a photo, a thought… an emotion as a status update: we are converting a biological function into a digital one. We are digitizing our analog stream-of-consciousness.
These Digital Breadcrumbs that we leave behind, will be mined by “deep learning” algorithms, feeding necessary data that will drive Quantum Archeology processes… that may one day soon, resurrect us — Digital Resurrection. This might sound like a Transhumanist’s Hansel and Gretel fairy-tale… but not for long.
How does Google Glass fit in? It’s the device that will accelerate the creation of Digital Bread-crumbs. I’d saved this most radical idea for last: Digital Resurrection.
Glass is already generating these BreadCrumbs — transhumanizing the first round of beta testers wearing the device.
The next version of Google Glass, if it features true see-through Augmented Reality support, or indeed a visor from a Google competitor, will allow us to see and interact with these Digital Surrogates of immortal beings. It’s described with plausible hard science to back it up, in Chapter 6 of Memories with Maya — The Dirrogate.
I’d like to end this essay by opening it up to wiki like input from you. What ideas can you come up with to make Google Glass a swiss army knife for Transhumanists?
(This article was originally posted on the Science behind the story section on Dirrogate.com)
A widely accepted definition of Transhumanism is: The ethical use of all kinds of technology for the betterment of the human condition.
This all encompassing summation is a good start as an elevator pitch to laypersons, were they to ask for an explanation. Practitioners and contributors to the movement, of course, know how to branch this out into specific streams: science, philosophy, politics and more.
We are in the midst of a technological revolution, and it is cool to proclaim that one is a Transhumanist. Yet, many intelligent and focused Transhumanists are asking some all important questions: What road-map have we drawn out, and what concrete steps are we taking to bring to fruition, the goals of Transhumanism?
Transhumanism could be looked at as culminating in Technological Singularity. People comprehend the meaning of Singularity differently. One such definition: Singularity marks a moment when technology trumps the human brain, and the limitations of the mind are surpassed by artificial intelligence. Being an Author and not a scientist myself, my definition of the Singularity is colored by creative vision. I call it Dirrogate Singularity.
I see us humans, successfully and practically, harnessing the strides we’ve made in semiconductor tech and neural networks, Artificial intelligence, and digital progress in general over the past century, to create Digital Surrogates of ourselves — our Dirrogates. In doing so, humans will reach pseudo-God status and will be free to merge with these creatures they have made in their own likeness…attaining, Dirrogate Singularity.
So, how far into the future will this happen? Not very far. In fact it can commence as soon as today or as far as, in a couple of years. The conditions and timing are right for us to “trans-form” into Digital Beings; Dirrogates.
I’ll use excerpts from the story ‘Memories with Maya’ to seed ideas for a possible road-map to Dirrogate Singularity, while keeping the tenets of Transhumanism in focus on the dashboard as we steer ahead. As this text will deconstruct many parts of the novel, major spoilers are unavoidable.
Dirrogate Singularity v/s The Singularity:
The main distinction in definition I make is: I don’t believe Singularity is the moment when technology trumps the human brain. I believe Singularity is when the human mind accepts and does not discriminate between an advanced “Transhuman” (effectively, a mind upload living in a bio-mechanical body) and a “Natural” (an un-amped homo sapien)
This could be seen as a different interpretation of the commonly accepted concept of The Singularity. As one of the aims of this essay is to create a possible road-map to seed ideas for the Transhumanism movement, I choose to look at a wholly digital path to Transhumanism, bypassing human augmentation via nanotechnology, prosthetics or cyborg-ism. As we will see further down, Dirrogate Singularity could slowly evolve into the common accepted definitions of Technological Singularity.
What is a Dirrogate:
A portmanteau of Digital + Surrogate. An excerpt from the novel explains in more detail:
“Let’s run the beta of our social interaction module outside.”
Krish asked the prof to follow him to the campus ground in front of the food court. They walked out of the building and approached a shaded area with four benches. As they were about to sit, my voice came through the phone’s speaker. “I’m on your far right.”
Krish and the prof turned, scanning through the live camera view of the phone until they saw me waving. The phone’s compass updated me on their orientation. I asked them to come closer.
“You have my full attention,” the prof said. “Explain…”
“So,” Krish said, in true geek style… “Dan knows where we are, because my phone is logged in and registered into the virtual world we have created. We use a digital globe to fly to any location. We do that by using exact latitude and longitude coordinates.” Krish looked at the prof, who nodded. “So this way we can pick any location on Earth to meet at, provided of course, I’m physically present there.”
“I understand,” said the prof. “Otherwise, it would be just a regular online multi-player game world.”
“Precisely,” Krish said. “What’s unique here is a virtual person interacting with a real human in the real world. We’re now on the campus Wifi.” He circled his hand in front of his face as though pointing out to the invisible radio waves. “But it can also use a high-speed cell data network. The phone’s GPS, gyro, and accelerometer updates as we move.”
Krish explained the different sensor data to Professor Kumar. “We can use the phone as a sophisticated joystick to move our avatar in the virtual world that, for this demo, is a complete and accurate scale model of the real campus.”
The prof was paying rapt attention to everything Krish had to say. “I laser scanned the playground and the food-court. The entire campus is a low rez 3D model,” he said. “Dan can see us move around in the virtual world because my position updates. The front camera’s video stream is also mapped to my avatar’s face, so he can see my expressions.”
“Now all we do is not render the virtual buildings, but instead, keep Daniel’s avatar and replace it with the real-world view coming in through the phone’s camera,” explained Krish.
“Hmm… so you also do away with render overhead and possibly conserve battery life?” the prof asked.
“Correct. Using GPS, camera and marker-less tracking algorithms, we can update our position in the virtual world and sync Dan’s avatar with our world.”
“And we haven’t even talked about how AI can enhance this,” I said.
I walked a few steps away from them, counting as I went.
“We can either follow Dan or a few steps more and contact will be broken. This way in a social scenario, virtual people can interact with humans in the real world,” Krish said. I was nearing the personal space out of range warning.
“Wait up, Dan,” Krish called.
I stopped. He and the prof caught up.
“Here’s how we establish contact,” Krish said. He touched my avatar on the screen. I raised my hand in a high-five gesture.
“So only humans can initiate contact with these virtual people?” asked the prof.
“Humans are always in control,” I said. They laughed.
“Aap Kaise ho?” Krish said.
“Main theek hoo,” I answered a couple of seconds later, much to the surprise of the prof.
“The AI module can analyze voice and cross-reference it with a bank of ten languages.” he said. “Translation is done the moment it detects a pause in a sentence. This way multicultural communication is possible. I’m working on some features for the AI module. It will be based on computer vision libraries to study and recognize eyebrows and facial expressions. This data stream will then be accessible to the avatar’s operator to carry out advanced interaction with people in the real world–”
“So people can have digital versions of themselves and do tasks in locations where they cannot be physically present,” the prof completed Krish’s sentence.
“Cannot or choose not to be present and in several locations if needed,” I said. “There is no reason we can’t own several digital versions of ourselves doing tasks simultaneously.”
“Each one licensed with a unique digital fingerprint registered with the government or institutions offering digital surrogate facilities.” Krish said.
“We call them di-rro-gates.” I said.
One of the characters in the story also says: “Humans are creatures of habit.” and, “We live our lives following the same routine day after day. We do the things we do with one primary motivation–comfort.”
Whether this is entirely true or not, there is something to think about here… What does ‘improving the human condition’ imply? To me Comfort, is high on the list and a major motivation. If people can spawn multiple Dirrogates of themselves that can interact with real people wearing future iterations of Google Glass (for lack of a more popular word for Augmented Reality visors)… then the journey on the road-map to Dirrogate Singularity is to see a few case examples of Dirrogate interaction.
Evangelizing Transhumanism:
In writing the novel, I took several risks, story length being one. I’ve attempted to keep the philosophy subtle, almost hidden in the story, and judging by reviews on sites such as GoodReads.com, it is plain to see that many of today’s science fiction readers are after cliff hanger style science fiction and gravitate toward or possibly expect a Dystopian future. This root craving must be addressed in lay people if we are to make Transhumanism as a movement, succeed.
I’d noticed comments made that the sex did not add much to the story. No one (yet) has delved deeper to see if there was a reason for the sex scenes and if there was an underlying message. The success of Transhumanism is going to be in large scale understanding and mass adoption of the values of the movement by laypeople. Google Glass will make a good case study in this regard. If they get it wrong, Glass will quickly share the same fate and ridicule as wearing blue-tooth headsets.
One of the first things, in my view, to improving the human condition, is experiencing pleasure… of every kind, especially carnal.
In that sense, we already are Digital Transhumans. Long distance video calls, teledildonics and recent mainstream offerings such as Durex’s “Fundawear” can bring physical, emotional and psychological comfort to humans, without the traditional need for physical proximity or human touch.
(Durex’s Fundawear – Image Courtesy Snapo.com)
These physical stimulation and pleasure giving devices add a whole new meaning to ‘wearable computing’. Yet, behind every online Avatar, every Dirrogate, is a human operator. Now consider: What if one of these “Fundawear” sessions were recorded?
The data stream for each actuator in the garment, stored in a file – a feel-stream, unique to the person who created it? We could then replay this and experience or reminisce the signature touch of a loved one at any time…even long after they are gone; are no more. Would such as situation qualify as a partial or crude “Mind upload”?
Mind Uploading – A practical approach.
Using Augmented Reality hardware, a person can see and experience interaction with a Dirrogate, irrespective if the Dirrogate is remotely operated by a human, or driven by prerecorded subroutines under playback control of an AI. Mind uploading [at this stage of our technological evolution] does not have to be a full blown simulation of the mind.
Consider the case of a Google Car. Could it be feasible that a human operator remotely ‘drive’ the car with visual feedback from the car’s on-board environment analysis cameras? Any AI in the car could be used on an as-needed basis. Now this might not be the aim of a driver-less car, and why would you need your Dirrogate to physically drive when in essence you could tele-travel to any location?
Human Shape Shifters:
Reasons could be as simple as needing to transport physical cargo to places where home delivery is not offered. Your Dirrogate could drive the car. Once at the location [hardware depot], your Dirrogate could merge with the on-board computer of an articulated motorized shopping cart. Check out counter staff sees your Dirrogate augmented in the real world via their visor. You then steer the cart to the parking lot, load in cargo [via the cart’s articulated arm or a helper] and drive home. In such a scenario, a mind upload has swapped physical “bodies” as needed, to complete a task.
If that use made your eyes roll…here’s a real life example:
Devon Carrow, a 2nd grader has a life threatening illness that keeps him away from school. He sends his “avatar” a robot called Vigo.
In the case of a Dirrogate, if the classroom teacher wore an AR visor, she could “see” Devon’s Dirrogate sitting at his desk. A mechanical robot body would be optional. An overhead camera could project the entire Augmented classroom so all children could be aware of his presence. As AR eye-wear becomes more affordable, individual students could interact with Dirrogates. Such use of Dirrogates do fit in completely with the betterment-of-the-human-condition argument, especially if the Dirrogate operator is a human who could come into harm’s way in the real world.
While we simultaneously work on longevity and eliminating deadly diseases, both noble causes, we have to come to terms with the fact that biology has one up on us in the virus department as of today. Epidemic outbreaks such as SARS can keep schools closed. Would it not make sense to maintain the communal ethos of school attendance and classroom interaction by transhumanizing ourselves…digitally?
Does the above example qualify as Mind Uploading? Not in the traditional definition of the term. But looking at it from a different perspective, the 2nd grader has uploaded his mind to a robot.
Dirrogate Immortality via Quantum Archeology:
Below is a passage from the story. The literal significance of which, casual readers of science fiction miss out on:
“Look at her,” I said. “I don’t want her to be a just a memory. I want to keep her memory alive. That day, the Wizer was part of the reason for three deaths. Today, it’s keeping me from dying inside.”
“Help me, Krish,” I said. “Help me keep her memory alive.” He was listening. He wiped his eyes with his hands. I took the Wizer off. “Put it back on,” he said.
A closer look at the Wizer – [visor with Augmented Intelligence built in.]
The preceding excerpt from the story talks about resurrecting her; digital-cryonics.
So, how would Quantum Archeology techniques be applied to resurrect a dead person? Every day we spend hours uploading our stream-of-consciousness to the “cloud”. Photos, videos, Instagrams, Facebook status updates, tweets. All of this is data that can be and is being mined by Deep Learning systems. There’s no prize for guessing who the biggest investor and investigator of Deep Learning is.
Quantum Archeology gets a helping hand with all the digital breadcrumbs we’re leaving around us in this century. The question is: Is that enough information for us to Create a Mind?
Mind Uploading – Libraries and Subroutines:
A more relevant question to ask is, should we attempt to build a mind from the ground up, or start by collecting subroutines and libraries unique to a particular person? Earlier on in the article, it was suggested that by recording a ‘Fundawear’ session, we could re-experience someone’s signature intimate touch. Using Deep Learning, can personality libraries be built?
A related question to answer is: Wouldn’t it make everything ‘artificial’ and be a degraded version of the original? To attempt to answer such a question, let’s look around us today. Aren’t we already degrading our sense of hearing for instance, when we listen to hour after hour of MP3 music sampled at 128kHz or less? How about every time we’ve come to rely on Google’s “did you mean” or Microsoft’s red squiggly line to correct even our simple spellings?
Now, it gets interesting… since we have mind upload “libraries”, we are at liberty to borrow subroutines from more accomplished humans, to augment our own intelligence.
Will the near future allow us to choose a Dirrogate partner with the creative thinking of one person’s personality upload, the intimate skill-set of another and… you get the picture. Most people lead routine 9 to 5 lives. That does not mean that they are not missed by loved ones after they have completed their biological life-cycle. Resurrecting or simulating such minds is much easier than say re-animating Einstein.
In the story, Krish, on digitally resurrecting his father recounts:
“After I saw Maya, I had to,” he said. “I’ve used her same frame structure for the newspaper reading. Last night I went through old photos, his things, his books,” his voice was low. “I’m feeding them into the frame. This was his life for the past two years before the cancer claimed him. Every evening he would sit in this chair in the old house and read his paper.”
I listened in silence as he spoke. Tactile receptors weren’t needed to experience pain. Tone of voice transported those spores just as easily.
“It was easy to create a frame for him, Dan,” he said. “In the time that the cancer was eating away at him, the day’s routine became more predictable. At first he would still go to work, then come home and spend time with us. Then he couldn’t go anymore and he was at home all day. I knew his routine so well it took me 15 minutes to feed it in. There was no need for any random branches.”
I turned to look at him. The Wizer hid his eyes well. “Krish,” I said. “You know what the best part about having him back is? It does not have to be the way it was. You can re-define his routine. Ask your mom what made your dad happy and feed that in. Build on old memories, build new ones and feed those in. You’re the AI designer… bend the rules.”
“I dare not show her anything like this,” he said. “She would never understand. There’s something not right about resurrecting the dead. There’s a reason why people say rest in peace.”
Who is the real Transhuman?
Is it a person who has augmented their physical self or augmented one of their five primary senses? Or is it a human who has successfully re-wired their brain and their mind to accept another augmented human and the tenets of Transhumanism?
“He said perception is in the eye of the beholder… or something to that effect.”
“Maybe he said realism?” I offered.
“Yeah. Maybe. Turns out he is a believer and subscribes to the concept of transhumanism,” Krish said, adjusting the Wizer on the bridge of his nose. “He believes the catalyst for widespread acceptance of transhumanism has to be based on visual fidelity or the entire construct will be stymied by the human brain and mind.”
“Hmm… the uncanny valley effect? It has to be love at first sight, if we are to accept an augmented person huh.”
“Didn’t know you followed the movement,” he said.
“Look around us. Am I really here in person?”
“Point taken,” he said.
While taking the noble cause of Transhumanism forward, we have to address one truism that was put forward in the movie, The Terminator: “It’s in your nature to destroy yourselves.”
When we eventually reach a full mind-upload stage and have the ability to swap or borrow libraries from other ‘minds’, will personality traits of greed still be floating around as rogue libraries? Perhaps the common man is right – A Dystopian future is on the cards, that’s why science fiction writers gravitate toward dystopia worlds.
Could this change as we progress from transhuman to post-human?
In building a road-map for Transhumanism, we need to present and evangelize more to the common man in language and scenarios they can identify with. That is one of the main reasons Memories with Maya features settings and language that at times, borders on juvenile fiction. Concepts such as life extension, reversal of aging and immortality can be made to resound better with laypeople when presented in the right context. There is a reason that Vampire stories are on the nation’s best seller lists.
People are intrigued and interested in immortality.
Of the two images above, as a typical Science Fiction reader, which would you gravitate towards? In designing the cover for my book I ran about 80 iterations of 14 unique designs through a group of beta readers, and the majority chose the one with the Green tint. (design credit: Dmggzz)
No one could come up with a satisfying reason on why they preferred it over the other, except that it “looked more sci-fi” I settled for the design on the right, though it was a very hard decision to make. I was throwing away one of the biggest draws to a book — An inviting Dystopian book cover.
As an Author (and not a scientist) myself, I’ve noticed that scifi readers seem to want dystopian fiction –exclusively. A quick glance at reader preferences in scifi on sites such as GoodReads shows this. Yet, from noticing Vampire themed fiction rule the best seller lists, and from box office blockbusters, we can assume, the common man and woman is also intrigued by Longevity and Immortality.
Why is it so hard for sci-fi fans to look to the “brighter side” of science. Look at the latest Star Trek for instance…Dystopia. Not the feel good, curiosity nurturing theme of Roddenberry. This is noted in a post by Gray Scott on the website ImmortalLife.
I guess my question is: Are there any readers or Futurology enthusiasts that crave a Utopian future in their fiction and real life, or are we descending a spiral staircase (no pun) into eventual Dystopia. In ‘The Dirrogate — Memories with Maya’, I’ve tried to (subtly) infuse the philosophy of transhumanism — technology for the betterment of humans.
At Lifeboat, the goal is ‘encouraging scientific advancements while helping humanity survive existential risks and possible misuse of increasingly powerful technologies.’ We need to reach out to the influencers of lay people, the authors, the film-makers… those that have the power to evangelize the ethos of Transhumanism and the Singularity, to paint the truth: Science and Technology advancement is for the betterment of the human race.
It would be naive to think that technology would not be abused and a Dystopia world is indeed a scary and very real threat, but my belief is: We should guide (influence?) people to harness this “fire” to nurture and defend humanity, via our literature and movies, and cut back on seeding or fueling ideas that might lead to the destruction of our species.
It is often said that empiricism is one of the most useful concepts in epistemology. Empiricism emphasises the role of experience acquired through one’s own senses and perceptions, and is contrary to, say, idealism where concepts are not derived from experience, but based on ideals.
In the case of radical life extension, there is a tendency to an ‘idealistic trance’ where people blindly expect practical biotechnological developments to be available and applied to the public at large within a few years. More importantly, idealists expect these treatments or therapies to actually be effective and to have a direct and measurable effect upon radical life extension. Here, by ‘radical life extension’ I refer not to healthy longevity (a healthy life until the age of 100–120 years) but to an indefinite lifespan where the rate of age-related mortality is trivial.
Let me mention two empirical examples based on experience and facts:
1. When a technological development depends on technology alone, its progress is often dramatic and exponential.
2. When a technological development also depends on biology, its progress is embarrassingly negligible.
Developments based solely on mechanical, digital or electronic concepts are proliferating freely and vigorously. Just 20 years ago, almost nobody had a mobile telephone or knew about the internet. Now we have instant global communication accessible by any member of the general public.
Contrast this with the advancement of biotechnology with regards to, say, the treatment of the common cold. There has not been a significantly effective treatment for the public at large for, I will not say a million, but certainly for several thousand years. The accepted current medical treatment for the common cold is with bed rest, fluids, and antipyretics which is the same as that suggested by Hippocrates. Formal guidelines for the modern treatment of cardiac arrest include chest compressions and mouth- to- mouth resuscitation (essentially the same as the technique used by the prophet Elisha in the Old Testament) as well as intra-cardiac (!) atropine, lignocaine and other drugs used by physicians during the 1930’s. In my medical museum in Cyprus (http://en.wikipedia.org/wiki/Kyriazis_Medical_Museum) I have examples of Medieval treatments for urinary retention (it was via a metal urinary catheter then, whereas now the catheter is plastic), treatment of asthma (with belladonna then, ipratropium now – a direct derivative), and treatment of pain (with opium then, with opium-like derivatives now).
About a hundred years ago, my grandfather (http://en.wikipedia.org/wiki/Neoklis_Kyriazis) wrote a book on hygiene, longevity and healthy life for the public, which included advice such as fresh air, exercise, consumption of fruit and vegetables, avoidance of excessive alcohol or cigarette smoke. These are of course preventative treatments advised by modern anti-ageing practitioners, hardly any progress in a century. In fact, these are the only proven treatments. Even the modern notion of ‘antioxidants’ can be encountered as standard health advice in medical books from the 1800’s. With the trivial exception of a handful of other examples, there has hardly been any progress in healthy longevity at all that can be applied to the common man in the street. Resveratrol? Was a standard health advice in ancient Greek medicine (red wine). Carnosine? Discovered and used 100 years ago. Cycloastragenol? Used in Chinese medicine 1000 years ago.
My question is: how do we expect to influence the process of ageing when we cannot even develop bio-technological cures for simple and common diseases? Are we really serious when we talk about biotechnological treatments that can lead to radical life extension, being developed within the next few years? And if we are really serious, is this belief based on empiricism or idealism? The manipulation of human biology has been particularly tricky, with no significant progress of effective breakthroughs developed during the past several decades. Here I, of course, acknowledge the value of some modern drugs and isolated bio-technological achievements, but my point is that these developments are based on relatively minor refinements of existing therapies, and not on new breakthroughs that can modify the human body in any positive or practical degree. Importantly, even if some isolated examples of effective biotechnology do exist, these are not yet suitable for use by the general public at large.
If we were to compare the progress of general technology with that of life extension biotechnology, we could see that:
A. The progress of technology over the past 100 years has been logarithmic to exponential, whereas that of life extension biotechnology has been virtually static.
B. The progress of technology over the past 20 years has been exponential, whereas that of life extension biotechnology has barely been logarithmic.
It is one thing to talk about future biotechnology developments as a discussion point, and to post these in blogs, for general curiosity. But it is a different thing altogether if we actually want to devise and deliver an effective, practical therapy that truly affords significant life extension.
A different approach is needed, one that does not depend exclusively on biotechnology. It would be naïve to say that I am arguing for the total abandonment of life extension biotechnology, but it is equally naïve to believe that this biotechnology is likely to be effective on its own. A possible way forward could be the attempt to modify human biology not via biotechnology alone, but also by making use of natural, already existing evolutionary mechanisms. One such example could be the use of ‘information-that-requires-action’ in order to force a reallocation of resources from germ-line to somatic cells. This is an approach we currently aiming to describe in detail. My final remark with regards to achieving indefinite lifespan is this: we must engage with technology without depending on biotechnology.
For some general background information on how to engage with technology see:
It is all too easy to assume that techno-optimists and techno-pessimists are diametrically opposed. But while they may have different destinations in mind, the road to get there – what they need to do to achieve their respective ends – is a shared one. Techno-optimists, Techno-progressives, Techno-gaians and Techno-utopians express hope and passion for technologies’ liberating and empowering potentials, while techno-pessimists are fearful of their dystopic and dehumanizing potentials. Optimists want to spread awareness of the ways in which technology can improve self and society, while pessimists seek to spread awareness of the ways in which technology can make matters worse. Techno-criticism is the neutral middle, where the unbiased study of culture and technology take place, and so should not be confused with Techno-pessimism.
But they both agree on the underlying premise that technologies can and likely will have profoundly transformative effects on self and society. They agree not only that we have the power to shape the outcomes such technologies can foster, that we have the power to affect and to a large extent determine the ultimate embodiment and repercussions of such technologies, but also that such technologies impel us to make concerted efforts towards determining such repercussions and embodiments! It may not look that way from the inside-out, but they are fighting to realize their vision of Humanity’s brightest future. Until we reach the day when the majority of humanity has extensively acknowledged the expansive power such transformative technologies hold, Techno-optimists & Techno-pessimists, Transhumanists & Luddites, and Revolutionaries & Revivalists alike are on the same side! Both camps are on a campaign to alert planet earth of the titanic transformations rushing foreforth upon its horizon. Both agree on the underlying potential such technologies hold for changing the world and the self – whether encased as Prized Present or in Pandora’s Box – and both are weary for the world to wake up and smell the rising.
And besides, we’re all in it together, no? At least Techno-pessimists are thinking about such issues, and putting forth their appraisals. At least they’ve begun to consider what is at stake. Is a techno-pessimist closer to a Technoprogressive or Transhumanist than one who doesn’t take a stance either way is? Maybe.
Not that the likes of Leon Kass, Francis Fukuyama and other Neo-Luddites, Developmental Critics, or Anarcho-Primitivists are to be heralded or left to lie without rebuttal. Their pessimism still does cause palpable harm, as in the delays in Stem-Cell research caused by G.W. Bush’s “President’s Council on Bioethics” evidenced. Thus we shouldn’t simply smile politely and let them on their merry way… But neither should we automatically jump to out-snuff their wild-fires of panic. We should instead let them whip up their frenzies, but be there waiting in the wings to attest for Icarus’s insight, and to offer Prometheus a light. Let them have their say, because it increases public awareness of the cause, because it clues people in to the fact that there many dangers are possible with these technologies (even if we disagree on the nature and extent of those dangers), but be sure to be there waiting, ready to refute their specific and untenable solutions, and not their call for fear in the first place. We are right to simultenaciously fear and hope for technology’s powerful potential. But considering that both Neo-Luddites and Neohumanists alike agree on the transformative and world-whirling capabilities of such technologies, is it more likely that we can take them in hand and shape the course of their eventual realization by outright relinquishment, or by taking advantage of those very transformative potentialities so as to increase our ability to shape them, in a self-recursive feedback loop fitting for Man, the Homoautofabber?
The very beliefs that Neo-Luddism share with Technoprogressivism and Transhumanism constitute one of the best reasons for arguing that their specific approach – outright relinquishment more often than not, or at least curtailing and slowing of development in certain areas to so large an extent that it shouldn’t even be called Differential Technological Development – is an untenable one. They seek to point out the massively transformative potential of technology, and then use this as an excuse to mitigate their dangers and ameliorate their potential downfalls. We should take their approach, pat them on the back (not too heartily, of course) for their starting point, and then flip the course around. We seek to point out the massively transformative potential of technology, but instead of arguing that the transformative potentialities of such technologies justifies their relinquishment, we should instead argue that those same transformative potentialities actually increase our potential to successfully shape their outcome and mitigate their potentially problematizing aspects!
What are the chances that as soon as it becomes possible to use technology in massively immoral ways, we also gain the ability to shape and determine the parameters of our own moralities — and through the very technologies that created the potential problems in the first place, no less? What are the chances that as soon as technology seems to be building upon itself in an unending upward avalanche of momentous momentum, we also gain — through the use of those very same technologies — the ability to better forecast cascading causes and effects into the postmost outpost and to better track trends into the forward-flitting future? The technologies that hold such transformative potential are neither good nor bad, but morally ambiguous. They have the power to spiral out of control, to be strung as leash or noose around humanity’s neck — but they also have the potential to increase our degree self-determination and our control — or our degree of choice — over the circumstances and capabilities afforded by our environments.
A closed circle can seem like just that, until adding a vertical dimension reveals that it was an upward spiral all along. We’ve turned upon ourselves to find (or perhaps just refine) ourselves at least once before, when meat went meta and matter turned upon itself to make mind. Perhaps this was but echoes through time of that final feedback for forward freedom we stand to face, upright and with eyes sun-undaunted, in a future so near that it might as well be here, where the fat of fate is now kindled anew to light our own spindled fires aspiring ever higher, into parts and selves wholly unknown — and holier for it.
Techno-pessimists, Neo-Luddites, Revivalists and Relinquishists alike are not wholly wrong, just mostly. Rather the backlash against technology’s profoundly transformative potentials represents one small step in the right direction, and one giant leap left-field. So let’s unite in their plight to ignite consideration of the dangerous potentialities of technology in the eyes of humanity, but fight them when they move to stop the motion with a whimpered halt, rather than to continue the discussion with daring determination and impassioned exalt of aug- and of alt-.
Japanese People are Getting Old — Fast. So… Robots! Japan is one of those great examples of how, when a society reaches a certain stage of development, population can stabilize itself based simply on quality of life (economic well-being, healthcare, community, Golden Rule morality, etc.). There is a challenge, however: population decline. In arguably one of the world’s most advanced capitalist nations, where 70% of GDP is based on the services economy and nearly all national debt is public held, a big die-off is… big problematic. Sure, the population decline will be gradual — but it’s inexorable, and Japan has to prepare now.
Make Robots, Not Babies? A (perhaps questionable) study from the Japan Family Planning Association found that 1/3 of Japanese youth have no desire to get their groove on. They just don’t wanna hump each other. And as many of us know, it’s not just an enjoyable hobby, it’s where babies come from! Realistically, a decent number of respondents were probably lying, though. Because in Japan being fake polite and feigning ignorance to the nastiness & porno of human life is… a way of life (that’s a compliment — fake polite is far better than honest rude).
But actually, whether a large segment of the youth truly don’t want to make sweet love, or do, it doesn’t change the fact that Japan’s going to be running out of people. Factor in a rising women’s liberation, the destigmatization of birth control, and perceived economic instability — who knows what the actual equation looks like, but the answer is a birthrate of 1.39. And in case it’s not obvious, a birthrate of at least 2 is a replacement set for the parents; a population at stasis. Ain’t happening.
So, at the end of the day, replacing the lost population with robots, thereby replacing a lost labor force and augmenting the consumer economy — well, seems like a decent enough course of action.
Fukushima’s Second Anniversary… Two years ago the international robot dorkosphere was stunned when, in the aftermath of the Tohoku Earthquake and Tsunami Disaster, there were no domestically produced robots in Japan ready to jump into the death-to-all-mammals radiation contamination situation at the down-melting Fukushima Daiichi nuclear power plant.
…and Japan is Hard at Work. Suffice it to say, when Japan finds out its robots aren’t good enough — JAPAN RESPONDS! For more on how Japan has and is addressing the situation, have a jump on over to AkihabaraNews.com.