Toggle light / dark theme

It has long been understood that a parent’s DNA is the principal determinant of health and disease in offspring. Yet inheritance via DNA is only part of the story; a father’s lifestyle such as diet, being overweight and stress levels have been linked to health consequences for his offspring. This occurs through the epigenome—heritable biochemical marks associated with the DNA and proteins that bind it. But how the information is transmitted at fertilization along with the exact mechanisms and molecules in sperm that are involved in this process has been unclear until now.

A new study from McGill, published recently in Developmental Cell, has made a significant advance in the field by identifying how is transmitted by non-DNA molecules in the sperm. It is a discovery that advances scientific understanding of the heredity of paternal life experiences and potentially opens new avenues for studying disease transmission and prevention.

The continuous improvement of imaging technology holds great promise in areas where visual detection is necessary, such as with cancer screening. Three-dimensional imaging in particular has become popular because it provides a more complete picture of the target object and its context.

“More doctors and radiologists are looking at these 3D volumes, which are new technologies that allow you to look not just at one image, but a set of images,” said UC Santa Barbara psychology professor Miguel Eckstein, whose expertise lies in the field of visual search. “In some imaging modalities this gives doctors information about volume and it allows them to segment what they’re interested in.”

Common wisdom is that with all this additional information provided, the rate of detection success should increase considerably. However that’s not always the case, Eckstein said. In a study published in the journal Current Biology, he, lead author Miguel Lago and their collaborators point out an odd foible of human vision: We’re actually worse at finding small targets in 3D image stacks than if they were in a single 2D image.

Summary: Study sheds light on what causes normal proteins to convert to a diseased form associated with CJD and Kuru.

Source: Imperial College London.

For the first time, researchers have pinpointed what causes normal proteins to convert to a diseased form, causing conditions like CJD and Kuru.

STUTTGART, Germany — NATO and its member nations have formally agreed upon how the alliance should target and coordinate investments in emerging and disruptive technology, or EDT, with plans to release artificial intelligence and data strategies by the summer of 2021.

In recent years the alliance has publicly declared its need to focus on so-called EDTs, and identified seven science and technology areas that are of direct interest. Now, the NATO enterprise and representatives of its 30 member states have endorsed a strategy that shows how the alliance can both foster these technologies — through stronger relationships with innovation hubs and specific funding mechanisms — and protect EDT investments from outside influence and export issues.

NATO will eventually develop individual strategies for each of the seven science and technology areas — artificial intelligence, data and computing, autonomy, quantum-enabled technologies, biotechnology, hypersonic technology, and space. But for the near future, the priority is AI and data, said David van Weel, NATO’s assistant secretary general for emerging security challenges.

Sherpa, a startup from Bilbao, Spain that was an early mover in building a voice-based digital assistant and predictive search for Spanish-speaking audiences, has raised some more funding to double down on a newer focus for the startup: building out privacy-first AI services for enterprise customers.

The company has closed $8.5 million, funding that Xabi Uribe-Etxebarria, Sherpa’s founder and CEO, said it will be using to continue building out a privacy-focused machine learning platform based on a federated learning model alongside its existing conversational AI and search services. Early users of the service have included the Spanish public health services, which were using the platform to analyse information about COVID-19 cases to predict demand and capacity in emergency rooms around the country.

The funding is coming from Marcelo Gigliani, a managing partner at Apax Digital; Alex Cruz, the chairman of British Airways; and Spanish investment firms Mundi Ventures and Ekarpen. The funding is an extension to the $15 million Sherpa has already raised in a Series A. From what I understand, Sherpa is currently also raising a larger Series B.

Might interest some, mentions telomeres.

~~~


Aging is a common factor in many diseases. So, what if it were possible to treat them by acting on the causes of aging or, more specifically, by acting on the shortening of telomeres, the structures that protect chromosomes? This strategy is being pursued by the Telomeres and Telomerase Group of the Spanish National Cancer Research Centre (CNIO), which has already succeeded in curing pulmonary fibrosis and infarctions in mice by lengthening telomeres. Now they take a first step towards doing the same with renal fibrosis by demonstrating that short telomeres are at the origin of this disease, which is also associated with aging.

The new study will be published this week in the journal Nature Aging.

Renal fibrosis is the most common cause of kidney failure, a disease that can currently only be treated by dialysis. It is characterized by excessive scarring of the tissue, which hardens and loses its functionality.

But such drugs could face a daunting challenge, since aging is not considered a disease. This means the Food and Drug Administration is unlikely to approve a drug for its anti-aging effects, or as a new use for a licensed drug. Also, pharmaceutical companies probably wouldn’t be inclined to develop drugs for that purpose only.


Drugs that can postpone or prevent the onset of debilitating diseases could enhance longevity and provide enormous societal benefits, geroscientists say.

Some experts have chimed in that tempering social distancing recommendations could be an important step to getting children back into classrooms. Dr. Ashish Jha, dean of the Brown University School of Public Health, suggested in a tweet that the C.D.C. guidance may be changing, and that is “good. Because 6 ft doesn’t protect teachers. But it does keep kids out of school.”

“Want to open schools safely? Masks. Ventilation. Testing. Vaccinating teachers/staff. That’s the list,” Dr. Jha tweeted.

The new study, published March 10, compared the incidence rates of coronavirus cases among students and staff in Massachusetts school districts that required at least six feet of separation with those that required only three feet of distance, and found no statistically significant differences in infection rates among staff members or students.

A new method called tensor holography could enable the creation of holograms for virtual reality, 3D printing, medical imaging, and more — and it can run on a smartphone.

Despite years of hype, virtual reality headsets have yet to topple TV or computer screens as the go-to devices for video viewing. One reason: VR can make users feel sick. Nausea and eye strain can result because VR creates an illusion of 3D viewing although the user is in fact staring at a fixed-distance 2D display. The solution for better 3D visualization could lie in a 60-year-old technology remade for the digital world: holograms.

Holograms deliver an exceptional representation of 3D world around us. Plus, they’re beautiful. (Go ahead — check out the holographic dove on your Visa card.) Holograms offer a shifting perspective based on the viewer’s position, and they allow the eye to adjust focal depth to alternately focus on foreground and background.