Toggle light / dark theme

I will look at the idea that all disease could be almost stopped in its tracks with a universal treatment for aging. A lot of people ask when we will cure aging and the answer is it may well be here sooner than many realise.

It doesn’t matter how good the treatments are that we develop for cancer, heart disease, alzheimers, and any other of a number of the most common ways we finally die, it is really just a game of whack a mole. If you survive one, just wait a few years and another will get you.

And they cost society, both socially and economically on a massive scale.

Does that sound morbid, sad, as if it is all just pointless?

Well it kind of is, in a way.

But it doesn’t have to be that way…

Read DNA : Identify Issues : Cure proactively Prevention is better than cure.

The report said the wildlife farms were part of a project the Chinese government has been promoting for 20 years.

Daszak said: “They take exotic animals, like civets, porcupines, pangolins, raccoon dogs and bamboo rats, and they breed them in captivity,” NPR cited. He added that the project was a means to “alleviate rural populations out of poverty,”

In the next two weeks, the WHO is expected to reveal the team’s investigative findings. However, Daszak provided NPR with a “highlight” of what the team determined.

The development of gene therapy, in particular gene editing using the CRISPR-Cas9 method, has prompted a lively discussion around the world about how deeply you can interfere with the human genome. The creators of this method have turned to the world community, including lawyers, to undertake a public discussion of the implications that it can create (The National Academies of Sciences Engineering Medicine, 2015). The most important problem to be resolved in the future, in my opinion, will be the issue of establishing very clear legal principles of liability for damages resulting from the editing of genes in human embryos and reproductive cells. However, before this happens, it is necessary to show the possible legal problems that may arise and that will certainly appear in future legislative work in the world. Questions must be asked to which world legal experts will need to seek answers. The goal of this paper is to show the possible legal problems and ask questions related to the liability for damages resulting from the editing of genes in human embryos and reproductive cells that will be answered in the future.

Private law considerations will be based on Polish law, although it should be pointed out that the conclusions derived from them appear to be of universal nature for different legal systems. Despite the fact that legal considerations will refer to the regulation of Polish law, the subject of the analysis will also be the differences in the legal qualification of reproductive cells and embryos in other European legislations. It seems that nowhere in the world are there special regulations regarding the liability for damage related to the genetic editing of reproductive cells or embryos. Therefore, there is a need to present new challenges for classic private law institutions, such as legal abilities, torts, or liability for damages. Due to the lack of uniform European regulations and different conflicts of rights the subject of analysis will not be wrongful life and wrongful birth actions, but only claims of prenatal damage to a child.

The first major legal problem facing the international community is, of course, the question of the legal acceptability of the editing of genes of human reproductive cells and embryos (van Dijke et al., 2018). In this regard, it should be pointed out that despite the initial demand to ban such editing, over time, increasingly more scientists have pointed to the fact that it is not possible to maintain such a moratorium (Doudna and Sternberg, 2017). Jiankui’s presentation at the Second International Summit on Human Genome Editing on November 272018, showed that the introduction of a moratorium on genetic modifications of embryos in Europe, the condemnation of such research by a group of 120 of the greatest geneticists, even the Chinese regulations (Zhang and Lie, 2018) will not limit its conduct (Cyranoski and Ledford, 2018). Globalization of the medical market means that if any procedures are allowed on other continents, they will also become available to Europeans (Lunshof, 2016).

“The furin cleavage site consists of four amino acids PRRA, which are encoded by 12 inserted nucleotides in the S gene. A characteristic feature of this site is an arginine doublet. This insertion could have occurred by random insertion mutation, recombination or by laboratory insertion. The researchers say the possibility of random insertion is too low to explain the origin of this motif. Surprisingly, the CGGCGG codons encoding the two arginines of the doublet in SARS-CoV-2 are not found in any of the furin sites in other viral proteins expressed by a wide range of viruses. Even within the SARS-CoV-2, where arginine is encoded by six codons, only a minority of arginine residues are encoded by the CGG codon. Again, only two of the 42 arginines in the SARS-CoV-2 spike are encoded by this codon — and these are in the PRRA motif. For recombination to occur, there must be a donor, from another furin site and probably from another virus. In the absence of a known virus containing this arginine doublet encoded by the CGGCGG codons, the researchers discount the recombination theory as the mechanism underlying the emergence of PRRA in SARS-CoV-2.”


The ongoing pandemic of coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has largely defied attempts to contain its spread by non-pharmaceutical interventions (NPIs). With the massive loss of life and economic damage, the only way out, in the absence of specific antiviral therapeutics, has been the development of vaccines to achieve population immunity.

A new study on the Preprints server discusses the origin of the furin cleavage site on the SARS-CoV-2 spike protein, which is responsible for the virus’s relatively high infectivity compared to relatives in the betacoronavirus subgenus.

Substantial transmission of SARS-CoV-2 infection occurred in the population of Wuhan in December 2019 with most cases reported in the second half of that month. Many early reported cases were associated with Huanan Market, indicating that it was one of the focus of the transmission. Nevertheless, transmission was also occurring elsewhere in Wuhan at the same time.

It is not possible on the basis of the current epidemiological information to determine how the SARS-CoV-2 was introduced into the Huanan Market. Substantial transmission of SARS-CoV-2 infection occurred among the population of Wuhan in December 2019.

While some of the early cases had an association with the Huanan Seafood Market, others were associated with other markets and other cases have no market association at all. It is likely that Huanan Seafood Market acted as a focus for transmission of the virus, but there are also transmissions appearing to have the occurrence elsewhere in Wuhan at the same time. This is our basic judgment. It is not possible on the basis of the current information to determine how SARS-CoV-2 was introduced into the Huanan Market.

The third part of my introduction will be the research of the animal environment group, the third group of our joint mission. Coronaviruses that phylogenetically relate to SARS-CoV-2 have been identified in different animals, including horseshoe bats and pangolins. Sampling of bats in Hubei Province, however, has failed to identify evidence of SARS-CoV-2-related viruses and sampling of wildlife in different places in China has so far failed to identify the presence of SARS-CoV-2.


Publicaciones de la organización mundial de la salud.

April 2020…

Daszak says the China bat sampling project has already racked up quite a number of successes. The team and its collaborators at the Wuhan Institute of Virology have collected about 15000 samples from bats. From these they have already identified about 400 wholly new coronaviruses. About 50 of those fall into a category that caused the 2002 outbreak of severe acute respiratory syndrome, or SARS, and, now, the COVID-19 pandemic.

The researchers were also able to demonstrate that at least some of the new bat coronaviruses they have found are capable of infecting a human cell in a petri dish. Then the team sampled the blood of people in China who live near various bat caves. They found evidence that for some time now, these bat coronaviruses have been spilling over into the human population.


Updated on May 1 at 10:50 a.m. ET

The U.S. government has suddenly terminated funding for a years-long research project in China that many experts say is vital to preventing the next major coronavirus outbreak.

The project was run by a U.S. nonprofit called EcoHealth Alliance. For more than a decade, the group has been sending teams to China to trap bats, collect samples of their blood, saliva and feces, and then check those samples for new coronaviruses that could spark the next global pandemic. The idea is to identify locations that need to be monitored, come up with strategies to prevent spillover of the virus into human populations and get a jump on creating vaccines and treatments. Already the project has identified hundreds of coronaviruses, including one very similar to the virus behind the current outbreak.

Biomedical gerontologist Aubrey de Grey, who’s Chief Science Officer of the SENS Research Foundation, is now predicting a 50% chance that people will begin retaining their youthful state via advanced science and technologies by the year 2036.

This is roughly around the same timeline that The Last Generation to Die is based on. Nailed it (hopefully)!