Toggle light / dark theme

In the new study, researchers instead aimed to reduce the amount of Nav1.7 that cells make in the first place. Bioengineer Ana Moreno and her colleagues at the University of California, San Diego, modified the “molecular scissors” of the gene editor CRISPR. Changes to the cutting enzyme Cas9 caused it to bind to DNA that makes Nav1.7 without slicing it, effectively preventing the Nav1.7 protein from being made. The researchers enhanced this silencing effect by hitching Cas9 to a repressor, another protein that inhibits gene expression.

The researchers tested the Cas9 approach—and a similar approach using another gene-editing protein known as a zinc finger—in mice given the chemotherapy drug paclitaxel, which can cause chronic nerve pain in cancer patients. The team measured pain by poking the animals’ paws with a thin nylon filament. Paclitaxel prompted mice to withdraw from gentler pokes, indicating that a normally nonpainful stimulus had become painful. But 1 month after an injection of the gene-silencing treatment into their spinal fluid, rodents responded much like mice that had never gotten paclitaxel, whereas untreated rodents remained hypersensitive, the team reports today in.

The approach could also prevent pain when given before paw injections of either the inflammation-causing compound carrageenan or a molecule called BzATP that increases pain sensitivity. And treated mice behaved no differently from untreated ones when their opposite paw—not inflamed by carrageenan—was exposed to a hot surface. That’s an encouraging initial sign that the injection didn’t silence Nav1.7 so completely that it creates a dangerous numbness to all pain, Moreno says. Behavioral tests so far haven’t turned up evidence of potentially concerning side effects; the injections didn’t appear to alter the animals’ movement, cognition, or anxiety levels.

Summary: Study identified 300 “hub genes” that appear to control separate gene networks in brain tissue samples. The SAMD3 gene appears to be a master regulator to control the activity of many of the gene hubs and the genes the hubs control.

Source: UT Southwestern Medical Center.

UT Southwestern scientists have identified key genes involved in brain waves that are pivotal for encoding memories. The findings, published online this week in Nature Neuroscience, could eventually be used to develop novel therapies for people with memory loss disorders such as Alzheimer’s disease and other forms of dementia.

“This is a fascinating study of gut microbiome in older adulthood,” wrote Barbara Bendlin from the University of Wisconsin, Madison. “While the investigators did not look at brain health or cognitive outcomes, it’s interesting to see that they found that healthy aging was accompanied by gut microbiomes that became increasingly more unique to each person starting in middle age. This type of divergence is also observed in brain aging.” (Full comment below.)

Past studies have shown that the gut microbiome undergoes rapid changes in the first three years of life, followed by a longer period of relative stability, then more change once again in later years (Yatsunenko et al., 2012; O’Toole and Jeffery, 2015). Research has also found that centenarians have fewer of the gut microbes commonly seen in younger, healthy people. Instead, they live with an increasingly rarefied microbiota (Kim et al., 2019). This suggests that gut microbiomes become increasingly personalized as people get older, but little is known about how these gut profiles affect the aging process or longevity.

To find out, first author Tomasz Wilmanski and colleagues analyzed gut microbiomes, personal traits, and clinical data from more than 9000 people 18 to 101 years old. They came from three independent cohorts. One was a group of 3653 people aged 18 to 87 who had signed up with Arivale, a now-defunct scientific wellness company co-founded by systems biology pioneer Leroy Hood and Price. Arivale provided personalized wellness coaching by collecting and analyzing data on participants’ genomes and other systems, including their gut microbiomes. Hood founded the Institute for Systems Biology.

Creating 200 billion-plus brand-new red blood cells a day can take a toll on a body. The capacity to replace components charged with the life-sustaining task of carrying oxygen eventually wears out with aging, resulting in health problems, from anemia to blood cancers.

What if we could halt the aging process and maintain young blood cells for life? With blood cells making up a whopping 90% of the body’s cells, it makes sense that keeping them abundant and fit could boost vitality into our golden years.

Now, a group of researchers, including experts at the University of Colorado Anschutz Medical Campus, has discovered ways to do just that – keep the blood manufacturing process flowing. The work, recently published in the journal Nature, could open doors to everything from disease-preventive therapies to better blood banks.

Rapamycin is the drug used to suppress the immune system after organ transplants, but in reduced doses, it appears it may have other health benefits and as such is discussed considerably in the longevity community, and taken regularly my some very famous proponents.

So I thought I would give you some background, alongside the pros and cons, to see what all the fuss is about…


Rapamycin Anti Aging.

Rapamycin is very popular in the anti aging paradigm so let’s have a look at what it is, what it offers, and what the trade offs are… because, well, it is always wise to have all the data.

If you want to know more about the hallmarks of aging I mentioned then check this out.

Links to studies mentioned.
Extension of chronological life span in yeast by decreased TOR pathway signaling.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1356109/

Rapamycin fed late in life extends lifespan in genetically heterogeneous mice.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2786175/

Unlike dietary restriction, rapamycin fails to extend lifespan.
https://onlinelibrary.wiley.com/doi/10.1111/acel.13302#.YCsRkk7C3I0.twitter.

Immune memory-boosting dose of rapamycin.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4119820/

North Carolina State University engineers continue to improve the efficiency of a flexible device worn on the wrist that harvests heat energy from the human body to monitor health.

In a paper published in npj Flexible Electronics, the NC State researchers report significant enhancements in preventing leakage in the flexible body heat harvester they first reported in 2017 and updated in 2020. The harvesters use from the human body to power —think of smart watches that measure your heart rate, blood oxygen, glucose and other health parameters—that never need to have their batteries recharged. The technology relies on the same principles governing rigid thermoelectric harvesters that convert heat to .

Flexible harvesters that conform to the are highly desired for use with wearable technologies. Mehmet Ozturk, an NC State professor of electrical and computer engineering and the corresponding author of the paper, mentioned superior skin contact with , as well as the ergonomic and comfort considerations to the wearer, as the core reasons behind building flexible thermoelectric generators, or TEGs.

Non-rigid point set registration is the process of finding a spatial transformation that aligns two shapes represented as a set of data points. It has extensive applications in areas such as autonomous driving, medical imaging, and robotic manipulation. Now, a method has been developed to speed up this procedure.

In a study published in IEEE Transactions on Pattern Analysis and Machine Intelligence, a researcher from Kanazawa University has demonstrated a technique that reduces the computing time for non-rigid point set registration relative to other approaches.

Previous methods to accelerate this process have been computationally efficient only for shapes described by small point sets (containing fewer than 100000 points). Consequently, the use of such approaches in applications has been limited. This latest research aimed to address this drawback.

You’ve heard of animals that can lose and then regenerate a tail or limb. But scientists reporting in the journal Current Biology on March 8 have now discovered two species of sacoglossan sea slug that can do even better, shedding and then regenerating a whole new body complete with the heart and other internal organs. The researchers also suggest that the slugs may use the photosynthetic ability of chloroplasts they incorporate from the algae in their diet to survive long enough for regeneration.

“We were surprised to see the head moving just after autotomy,” said Sayaka Mitoh of Nara Women’s University in Japan. “We thought that it would die soon without a heart and other important organs, but we were surprised again to find that it regenerated the whole body.”

The discovery was a matter of pure serendipity. Mitoh is a PhD candidate in the lab of Yoichi Yusa. The Yusa lab raises sea slugs from eggs to study their life history traits. One day, Mitoh saw something unexpected: a sacoglossan individual moving around without its body. They even witnessed one individual doing this twice.

Nanoengineers at the University of California San Diego have developed a “wearable microgrid” that harvests and stores energy from the human body to power small electronics. It consists of three main parts: sweat-powered biofuel cells, motion-powered devices called triboelectric generators, and energy-storing supercapacitors. All parts are flexible, washable and can be screen printed onto clothing.

The technology, reported in a paper published Mar. 9 in Nature Communications, draws inspiration from community microgrids.

“We’re applying the concept of the microgrid to create systems that are powered sustainably, reliably and independently,” said co-first author Lu Yin, a nanoengineering Ph.D. student at the UC San Diego Jacobs School of Engineering. “Just like a city microgrid integrates a variety of local, renewable power sources like wind and solar, a wearable microgrid integrates devices that locally harvest energy from different parts of the body, like sweat and movement, while containing .”