Toggle light / dark theme

An animal scientist with Wageningen University & Research in the Netherlands has created an artificial-intelligence-based application that can gauge the emotional state of farm animals based on photographs taken with a smartphone. In his paper uploaded to the bioRxiv preprint server, Suresh Neethirajan describes his app and how well it worked when tested.

Prior research and anecdotal evidence has shown that are more productive when they are not living under stressful conditions. This has led to changes in , such as shielding cows’ eyes from the spike that is used to kill them prior to slaughter to prevent stress hormones from entering the meat. More recent research has suggested that it may not be enough to shield from stressful situations—adapting their environment to promote peacefulness or even playfulness can produce desired results, as well. Happy cows or goats, for example, are likely to produce more milk than those that are bored. But as Neethirajan notes, the emotional state of an animal can be quite subjective, leading to incorrect conclusions. To address this problem, he adapted human face recognition software for use in detecting emotions in cows and pigs.

The system is called WUR Wolf and is based on several pieces of technology: the YOLO Object Detection System, the YOLOv4 that works with a convolution and Faster R-CNN, which also allows for detection of objects, but does so with different feature sets. For training, he used the Nvidia GeForece GTX 1080 Ti GRP running on a CUDA 9.0 computer. The data consisted of thousands of images of cows and pigs taken with a smartphone from six farms located in several countries with associated classification labels indicating which could be associated with which mood—raised ears on a cow, for example, generally indicate the animal is excited.

Toyota finally unveils its first EV, an all electric SUV called bZ4x but it also responded to pressure of some investors to cut out the anti-EV lobbying. InsideEVs and Forbes contributor Tom Moloughney will be here to weigh in, plus other EV news of the week.

https://www.youtube.com/channel/UCdX0BJNon1c6GfOdeS3pyDw.

OUR SPONSORS:

❤️ XPENG MOTORS — Follow China’s leading smart EV automaker on Facebook at https://www.facebook.com/XpengMotorsGlobal.

My P7 video: https://youtu.be/9o0xGNewz5M

IMPORTANT NOTICE: Sponsors of this channel do not in any way control or influence the opinion or views expressed in E for Electric videos. All sponsor content is clearly marked and announced in every instance. Views and opinions expressed on this channel do not necessarily represent or reflect the opinions of our sponsors, their partners or their associates.

Electric vehicles by 2030 – Future Timeline. The International Energy Agency (IEA) has today released its Global Electric Vehicle Outlook 2021. The report shows that, despite the pandemic, growth in electric vehicle sales has remained strong and will likely continue to boom in the coming decade.

The now-familiar sight of traditional propeller wind turbines could be replaced in the future with wind farms containing more compact and efficient vertical turbines.

New research from Oxford Brookes University has found that the vertical turbine design is far more efficient than traditional turbines in large-scale wind farms, and when set in pairs the vertical turbines increase each other’s performance by up to 15%.

A research team from the School of Engineering, Computing and Mathematics (ECM) at Oxford Brookes led by Professor Iakovos Tzanakis conducted an in-depth study using more than 11500 hours of computer simulation to show that wind farms can perform more efficiently by substituting the traditional propeller-type Horizontal Axis Wind Turbines (HAWTs), for compact Vertical Axis Wind Turbines (VAWTs).

Scientists develop a low-cost, highly efficient technique that uses solar energy to remove salt from seawater, producing safe drinking water.

Despite the vast amount of water on Earth, most of it is nonpotable seawater. Freshwater accounts for only about 2.5% of the total, so much of the world experiences serious water shortages.

In AIP Advances, by AIP Publishing, scientists in China report the development of a highly efficient desalination device powered by solar energy. The device consists of a titanium-containing layer, TiNO, or titanium nitride oxide, capable of absorbing solar energy. The TiNO is deposited on a special type of paper and foam that allows the solar absorber to float on seawater.

According to the university, the system focuses on the “thermal recovery and post-treatment of glass fibres” from glass-reinforced polymer composite scrap, with the end result “near-virgin quality glass fibres.” The idea is that, using this system, the composite waste could be re-used.


The aim is to scale-up and commercialize a process developed by team at the University of Strathclyde, in Scotland.

While biodegradable plastics have been touted as a solution to plastic pollution, in practice they don’t work as advertised.

“Biodegradability does not equal compostability,” Ting Xu, study coauthor and UC Berkeley polymer scientist, told Science News.

But by studying nature, Xu and her team have developed a process that actually breaks down biodegradable plastics with just heat and water in a period of weeks. The results, published in Nature on Wednesday, could be game-changing for the plastic pollution problem.

OEC promoting STEM education in Africa.


Remember the project where Bill Gates wanted to cover the sun to cool the Earth? Well, this summer, the tests will begin. According to The Times, a large balloon will soon be launched in Sweden that will spew out of calcium carbonate, which is essentially “chalk dust.”

The Controlled Stratospheric Perturbation Experiment (SCoPEx) wants to prove that the release of this dust into the stratosphere could eventually divert some of the sun’s energy and lower the temperatures of our planet.

Historical fact

The balloon will be launched near the Arctic city of Kiruna, and it would be the first serious attempt to test whether global warming can be kept under control by dimming the sunlight.