Toggle light / dark theme

Unlocking The Potential Of Salt and Drought Tolerant Crops And Seawater Agriculture — Professor Dr. Mark Tester — Center for Desert Agriculture, King Abdullah University of Science and Technology; Co-founder & CSO, Red Sea Farms.


Professor Dr. Mark Tester is Professor, Plant Science, and Associate Director, Center for Desert Agriculture, Biological and Environmental Science and Engineering Division, of King Abdullah University of Science and Technology (KAUST) in Saudi Arabia.

Prior to joining King Abdullah University of Science and Technology in February 2013, Professor Tester was a professor of plant physiology at the University of Adelaide and the Australian Centre for Plant Functional Genomics from 2009 to 2013. He has a PhD from the University of Cambridge in plant sciences.

The aim of Professor Tester’s research program is to elucidate the molecular genetic mechanisms that enable certain plants to thrive in sub-optimal conditions, such as those of high salinity or high temperature, and then deliver the outputs in economically viable systems, such as barley, rice, tomatoes and quinoa.

An immediate applied aim of the program is to modify crop plants in order to increase productivity in conditions of challenging abiotic stress, with consequent improvement of yield in Saudi Arabia, the region and globally.

A larger aspiration is to unlock seawater, by developing a new economically viable agricultural system where salt-tolerant crops are irrigated with partially desalinized seawater or brackish groundwater.

A company, Red Sea Farms, has been established to facilitate this scientific translation, of which Dr. Tester is Co-founder and CSO.

The Biden administration on Monday said it has approved a major solar energy project in the California desert that will be capable of powering nearly 90000 homes.

The $550 million Crimson Solar Project will be sited on 2000 acres of federal land west of Blythe, California, the Interior Department said in a statement. It is being developed by Canadian Solar (CSIQ.O) unit Recurrent Energy and will deliver power to California utility Southern California Edison.

The announcement comes as President Joe Biden has vowed to expand development of renewable energy projects on public lands as part of a broader agenda to fight climate change, create jobs and reverse former President Donald Trump’s emphasis on maximizing fossil fuel extraction.

Billy Hurley, Digital Editorial Manager.

Metal-air batteries are light, compact power sources with a high energy density, but they have had a major limitation: They corrode.

A new design from the Massachusetts Institute of Technology uses oil to reduce the corrosion and extend the shelf life of single-use metal-air batteries.

Researchers in the materials department in UC Santa Barbara’s College of Engineering have uncovered a major cause of limitations to efficiency in a new generation of solar cells.

Various possible defects in the lattice of what are known as hybrid perovskites had previously been considered as the potential cause of such limitations, but it was assumed that the organic molecules (the components responsible for the “hybrid” moniker) would remain intact. Cutting-edge computations have now revealed that missing hydrogen atoms in these molecules can cause massive efficiency losses. The findings are published in a paper titled “Minimizing hydrogen vacancies to enable highly efficient hybrid perovskites,” in the April 29 issue of the journal Nature Materials.

The remarkable photovoltaic performance of hybrid perovskites has created a great deal of excitement, given their potential to advance solar-cell technology. “Hybrid” refers to the embedding of organic molecules in an inorganic perovskite lattice, which has a crystal structure similar to that of the perovskite mineral (calcium titanium oxide). The materials exhibit power-conversion efficiencies rivaling that of silicon, but are much cheaper to produce. Defects in the perovskite crystalline lattice, however, are known to create unwanted energy dissipation in the form of heat, which limits efficiency.

Japanese auto giant Toyota is working on a new-age hydrogen vehicle. When the words Toyota and Hydrogen are in the same sentence, the hydrogen-powered Toyota Mirai comes to mind. Still, the Mirai is a hydrogen-electric car or FCEV (fuel-cell electric vehicle). It uses hydrogen fuel to convert electricity and power an onboard electric motor. This time, Toyota came up with something different.

“At the end of last year, we built a prototype that provided that ‘car feeling’ that car lovers love, such as through sound and vibration, even though we were dealing with environmental technology, said Koji Sato, Chief Branding Officer, and Gazoo Racing Company President. ” It was only recently that I realized, as one thing led to another, that we could use technologies that we had on hand.”

Perovskite has a lot going for it in our search for a cheap, efficient way to harvest solar energy. With a dusting of organic molecules, these crystalline structures have been able to convert more than a quarter of the light falling onto them into electricity.

Theoretically, perovskite crystals made with the right mix of materials could push this limit beyond 30 percent, outperforming silicon-based solar cells (which is currently the most abundant solar panel technology), and at a much lower cost. It’s all good on paper, but in reality, something has been holding the technology back.

Combine calcium, titanium, and oxygen under the right conditions and you’ll form repeating cages of molecules that look like a bunch of boxes joined at their corners.

An international collaboration of astronomers led by a researcher from the Astrobiology Center and Queen’s University Belfast, and including researchers from Trinity, has detected a new chemical signature in the atmosphere of an extrasolar planet (a planet that orbits a star other than our Sun).

Oshkosh can make 100% battery-electric delivery trucks for the U.S. Postal Service, likely dashing Workhorse’s hopes of reigniting the competition.


Oshkosh Truck Corp. (NYSE: OSK) can make 100% battery-electric delivery trucks for the U.S. Postal Service, undercutting an assertion by Workhorse Group (NASDAQ: WKHS) that its being passed over for the contract dooms the mail service to remaining a source of planet-warming greenhouse gas emissions.

Not so, Oshkosh President and CEO John Pfeifer told analysts on the company’s fiscal second-quarter earnings call Wednesday.

“We can do 100% electric vehicles from Day One,” Pfeiffer said. “If the U.S. Postal Service came to us tomorrow and said, ‘We’ve got the funding to do 100% electric from 2023,’ we can do it.”

California is set to be home to two new compressed-air energy storage facilities – each claiming the crown for the world’s largest non-hydro energy storage system. Developed by Hydrostor, the facilities will have an output of 500 MW and be capable of storing 4 GWh of energy.

As the world shifts towards renewable energy, grid-scale storage is becoming ever more crucial. Getting carbon emissions to net-zero will require a patchwork of technologies to smooth out unpredictable and inconvenient generation curves, with pumped hydro, huge lithium-ion batteries, tanks full of molten salt or silicon, thermal bricks, or heavy blocks stacked up in towers or suspended in mineshafts all in the mix.

Pumped hydro accounts for around 95 percent of the world’s grid energy storage and gigwatt-capacity plants have been in operation since the 1980s. The problem is that you need a specific type of location and a staggering amount of concrete to build a pumped hydro plant, which works against the goal of reaching net zero. Rotting vegetation trapped in dams also contributes to greenhouse gas emissions. Meanwhile, the biggest mega-batteries built so far are only in the 200 MW/MWh range, though installations bigger than 1 GW are planned.