Toggle light / dark theme

Interesting write up by Stanford on Astrocytes and neurodegenerative diseases. One area that I will be interested in finding research is any ties to Dystonia as Astrocytes own impact to the central nervous system.


Judging from the very terms used to designate brain research — neuroscience, neuro logy, neuro biology — you might figure nerve cells (or neurons, as brain scientists like to call them) are the only cells in the brain worth knowing about or, indeed, the only cells resident in that organ.

Not true. In fact, neurons account for a measly 10 percent of the cells in a healthy human brain. And over the past 25 years Stanford brain scientist Ben Barres, MD, PhD, has arguably done as much as any human on earth to advance the status of the 90 percent of cells in the brain that aren’t neurons. Among those are a particularly interesting group called astrocytes because of their star-shaped appearance, and they were the focus of a just-published study by Barres’ group.

As I describe in a news release on the Nature paper:

Read more

Nice; ReRam with multi-state processing and reliable storage.


Short of full blown molecular computers or universal quantum computers or optical computers memristors have the most potential for a hardware change to dramatically boost the power and capabilities of computers. The boost to computer power could be nearly a million times by fully leveraging memristors. It would likely be more like a thousand times with more near to mid term usage of memristors.

Memristors (aka ReRAM) could become computer memory that is over 10 times denser than Flash or DRAM in two dimensions. Memristors like flash would be nonvolatile memory that would not need power for retain memory. Memristors are created from nanowire lattices which could be stacked in three dimensions. Memristors have also previously been shown to behave like brain synapses which could be used for computer architectures that emulate the human brain for neuromorphic computing. Now there is work on multistate memristors that perform computation. This means that eventually processing and memory could be tightly integrated.

Light travels 30 centimeters in 1 nanosecond. Wires have an approximate propagation delay of 1 ns for every 6 inches (15 cm) of length. Logic gates can have propagation delays ranging from more than 10 ns down to the picosecond range, depending on the technology being used.

Read more

MINNEAPOLIS — Scanning a premature infant’s brain shortly after birth to map the location and volume of lesions, small areas of injury in the brain’s white matter, may help doctors better predict whether the baby will have disabilities later, according to a new study published in the January 18, 2017, online issue of Neurology ®, the medical journal of the American Academy of Neurology.

According to the Centers for Disease Control and Prevention, one in 10 babies is born prematurely in the United States.

Lack of oxygen to the brain is the most common form of brain injury in premature infants, resulting in damage to the white matter. White matter contains nerve fibers that maintain contact between various parts of the brain. Damage to white matter can interfere with communication in the brain and the signals it sends to other parts of the body.

Read more

Biological engineers at Harvard University’s Wyss Institute for Biologically Inspired Engineering have invented a microchip that can be lined with living human cells in order to revolutionise medicine, particularly relating to drug testing, disease modelling and personalised medicine.

The ‘human organs-on-chip’ is a microchip made from a clear flexible polymer that contains hollow microfluidic channels that are lined with living human cells, together with an interface that lines the interior surface of blood vessels and lymphatic vessels, known as an endothelium.

The idea is that the microchip can emulate the microarchitecture and functions of multiple human organs such as the lungs, kidneys, skin, bone marrow, intestines and blood-brain barrier. And if you were able to do this, you could then test out drugs and study how diseases affect the body without having to endanger human patients, or waste precious organs needed for transplants.

Read more

Summary: Researchers report an anti malaria drug has helped improve length and quality of life for a 26 year old brain cancer patient.

Source: University of Colorado.

After her brain cancer became resistant to chemotherapy and then to targeted treatments, 26-year-old Lisa Rosendahl’s doctors gave her only a few months to live. Now a paper published January 17 in the journal eLife describes a new drug combination that has stabilized Rosendahl’s disease and increased both the quantity and quality of her life: Adding the anti-malaria drug chloroquine to her treatment stopped an essential process that Rosendahl’s cancer cells had been using to resist therapy, re-sensitizing her cancer to the targeted treatment that had previously stopped working. Along with Rosendahl, two other brain cancer patients were treated with the combination and both showed similar, dramatic improvement.

Read more

Pretty wild.


Researchers of the German Center for Neurodegenerative Diseases (DZNE) have found that “alpha-synuclein,” a protein involved in a series of neurological disorders including Parkinson’s disease, is capable of travelling from brain to stomach and that it does so following a specific pathway. Donato Di Monte and co-workers report on this in the journal Acta Neuropathologica. Their study, carried out in rats, sheds new light on pathological processes that could underlie disease progression in humans.

Alpha-synuclein occurs naturally in the nervous system, where it plays an important role in synaptic function. However, in Parkinson’s disease, dementia with Lewy bodies and other neurodegenerative diseases termed “synucleinopathies,” this protein is accumulated within neurons, forming pathological aggregates. Distinct areas of the brain become progressively affected by this condition. The specific mechanisms and pathways involved in this widespread distribution of alpha-synuclein pathology remain to be fully elucidated. Clinical and experimental evidence suggests however that alpha-synuclein — or abnormal forms of it — could “jump” from one neuron to another and thus spread between anatomically interconnected regions.

Alpha-synuclein lesions have also been observed within neurons of the peripheral nervous system, such as those in the gastric wall. In some Parkinson’s patients, these lesions were detected at early disease stages. “Based on these intriguing observations, it has been hypothesized that the pathological process underlying Parkinson’s disease may actually start in the gastrointestinal tract and then move toward the brain,” Professor Di Monte says. “Our present approach was to look at this long-distance transmission of alpha-synuclein from the opposite perspective, investigating the possibility that alpha-synuclein may travel from the brain to the gut.”

Read more

Nice.


In research that could one day lead to advances against neurodegenerative diseases like Alzheimer’s and Parkinson’s, University of Michigan engineering researchers have demonstrated a technique for precisely measuring the properties of individual protein molecules floating in a liquid.

Proteins are essential to the function of every cell. Measuring their properties in blood and other body fluids could unlock valuable information, as the molecules are a vital building block in the body. The body manufactures them in a variety of complex shapes that can transmit messages between cells, carry oxygen and perform other important functions.

Sometimes, however, proteins don’t form properly. Scientists believe that some types of these misshapen proteins, called amyloids, can clump together into masses in the brain. The sticky tangles block normal cell function, leading to brain cell degeneration and disease.

But the processes of how amyloids form and clump together are not well understood. This is due in part to the fact that there’s currently not a good way to study them. Researchers say current methods are expensive, time-consuming and difficult to interpret, and can only provide a broad picture of the overall level of amyloids in a patient’s system.

Read more

Exercise is one of the best ways to slow down aging and its free too!


(Boston) — Older adults who experience good cardiac fitness may be also keeping their brains in good shape as well.

In what is believed to be the first study of its kind, older adults who scored high on cardiorespiratory fitness (CRF) tests performed better on memory tasks than those who had low CRF. Further, the more fit older adults were, the more active their brain was during learning. These findings appear in the journal Cortex. Difficulty remembering new information represents one of the most common complaints in aging and decreased memory performance is one of the hallmark impairments in Alzheimer’s disease.

Healthy young (18−31 years) and older adults (55−74 years) with a wide range of fitness levels walked and jogged on a treadmill while researchers assessed their cardiorespiratory fitness by measuring the ratio of inhaled and exhaled oxygen and carbon dioxide. These participants also underwent MRI scans which collected images of their brain while they learned and remembered names that were associated with pictures of unfamiliar faces.

Read more