Toggle light / dark theme

A research team led by Professor Ed X. Wu of the Department of Electrical and Electronic Engineering at the University of Hong Kong has used an innovative neuroimaging tool to interrogate the complex brain networks and functions.

The team has successfully manipulated two pioneering technologies: optogenetics and imaging (fMRI), for investigation of the dynamics underlying activity propagation. Their breakthrough to simultaneously capture large-scale brain-wide neural activity propagation and interaction dynamics, while examining their functional roles has taken scientists a step further in unravelling the mysteries of the brain. It could lead to the development of new neurotechnologies for early diagnosis and intervention of brain diseases including autism, Alzheimer’s disease or dementia.

The findings have recently been published in the prestigious international academic journal Proceedings of the National Academy of Sciences (PNAS).

Read more

Oh, the logic of objections against rejuvenation! bigsmile


If you’ve ever tried to advocate for rejuvenation, you know it is hard. Usually, people deem the idea as crazy/impossible/dangerous well before you get to finish your first sentence. Living too long would be boring, it would cause overpopulation, ‘immortal’ dictators, and what you have. However, you’ve probably never heard anyone use the same arguments to say that we should not cure individual age-related diseases. This is largely because people have little to no idea about what ageing really is, and how it cannot be untangled from the so-called age-related pathologies. These are nothing more, nothing less, than the result of the life-long accumulation of several types of damage caused by the body’s normal operations. Unlike infectious diseases, the diseases of old age are not the result of a pathogen attack, but essentially of your own body falling apart. As I was saying, people are largely unaware of this fact, and therefore expect that the diseases of ageing could be cured one by one without having to interfere with the ageing process itself, as if the two weren’t related at all. The result of this false expectation would be that you could cure Alzheimer’s, Parkinson’s, etc., but somehow old people would still drop dead around the age of 80 just because they’re old. That’s like saying they died of being healthy.

Back to reality, this can’t be done. To cure the diseases of old age, you need to cure ageing itself. If, for whatever reason, you think that curing ageing as a whole would be a bad idea and it should not be done, the only option is to not cure at least some of the root causes of ageing. Consequently, some age-related pathologies would remain as untreatable as they are today.

Now, the typical objections raised against rejuvenation tend to sound reasonable at first. To some, the statement ‘We should not cure ageing because it would lead to overpopulation’ sounds self-evident. However, if we consider the implications of this statement, things start getting crazy. As said, not curing ageing implies not curing some of its root causes, which in turn implies not curing some age-related diseases. Therefore, the sentence ‘We should not cure ageing’ implies ‘We should not cure [insert age-related disease here] . What happens when we reformulate typical objections to rejuvenation in this fashion?

Read more

Finally, maybe hope for GBM patients.


In a rapid-fire series of breakthroughs in just under a year, researchers at the University of North Carolina at Chapel Hill have made another stunning advance in the development of an effective treatment for glioblastoma, a common and aggressive brain cancer. The work, published in the Feb. 1 issue of Science Translational Medicine, describes how human stem cells, made from human skin cells, can hunt down and kill human brain cancer, a critical and monumental step toward clinical trials — and real treatment.

Last year, the UNC-Chapel Hill team, led by Shawn Hingtgen, an assistant professor in the Eshelman School of Pharmacy and member of the Lineberger Comprehensive Care Center, used the technology to convert mouse skin cells to stem cells that could home in on and kill human brain cancer, increasing time of survival 160 to 220 percent, depending on the tumor type. Now, they not only show that the technique works with human cells but also works quickly enough to help patients, whose median survival is less than 18 months and chance of surviving beyond two years is 30 percent.

Read more

Scientists at The Scripps Research Institute (TSRI) have found that deep brain stimulation (DBS) can greatly reduce the compulsion to use heroin in standard rat models of addiction.

Rats that were used to taking , and normally would have self-administered more and more of the drug, did not escalate their intake when treated with DBS.

The treatment involves the weak electrical stimulation, via implanted electrodes, of a brain region called the subthalamic .

Read more

No more smartphones.


In Brief

  • Researchers are finding ways for us to communicate using only our minds, going so far as to give people in separate rooms the ability to send answers to each other without speaking.
  • If we can hone this technology, it could help people with paralysis or other physical disorders regain the ability to communicate or perform physical tasks.

Imagine living in a world in which verbal communication is no longer required, a society in which telepathy is the norm, where people would be able to “speak” to each other using only their thoughts.

Scientists have long been contemplating the possibilities of brain-to-brain communication in humans, and it appears as though their dreams could become a reality within the next year or so. Such a system would be made possible via major advances in the technology that have been achieved via recent trials involving animals.

Read more

https://youtube.com/watch?v=eEHVS0URsWE

Great method btw.


Epilepsy is the fourth most common neurological disorder in the United States. Patients who have it are of all ages and it can seriously limit one’s ability to enjoy life. It’s a spectrum disorder which means the kinds of seizures people suffer and how they are managed will vary depending on the patient. Currently about 3 million people in the US are living with epilepsy and experts predict that at least 1 in 26 people will develop epilepsy at some point in their lifetime. While epilepsy is most often treated with anti-seizure medication, there are some patients who have not benefitted from medication. This form of the disorder is called drug-resistant epilepsy and can be very difficult to treat.

There are surgical options, but it’s crucial to have a good picture of the brain’s anatomy before any surgery is undertaken. Currently there are two methods for this. A recent article published by the American Academy of Neurology in the medical journal Neurology, looked at the two methods and revised the guidelines for each. The more common method of mapping the brain before surgery is the intracarotid amobarbital procedure, also known as the Wada test. In this procedure one side of the brain is anesthetized by injecting medication via the carotid artery. It’s invasive, can be uncomfortable and does carry some risk. The other way to get a look at the brain architecture is to use functional MRI scans.

Read more

The ancient impulse to procreate is necessary for survival and must be hardwired into our brains. Now scientists from the University of North Carolina School of Medicine have discovered an important clue about the neurons involved in that wiring.

Using advanced deep brain imaging techniques and optogenetics, the UNC scientists found that a small cluster of sex-hormone-sensitive neurons in the mouse hypothalamus are specialized for inducing mice to “notice” the opposite sex and trigger attraction.

This study, led by Garret D. Stuber, PhD, associate professor of psychiatry and cell biology & physiology, and Jenna A. McHenry, PhD, a postdoctoral research associate in Stuber’s lab, identified a hormone-sensitive circuit in the brain that controls social motivation in female mice.

Read more

Interesting write up some fiction and some non-fiction brought together on a common theory about Quantum. I do have a huge curiosity around the work going on the parallel states research and the job postings by some companies for psychics. Wouldn’t it be funny that if all these folks who thought they saw something like a spirit really did due to Quantum parallel states? What if Musk and others who believe we’re living in VR was actually true and was because of the same thing with the psychics? Who knows; but does make one think for a minute about what if.


The theoretical physicist has written a bold book that deals with the biggest questions, taking in quantum theory and free will along the way.

Read more

Now, this is a breakfast I wished that I could have experienced.


So, I tweeted about this yesterday, but I also spent the entire day feeling achy and feverish, so didn’t have brains or time for a blog post with more details. I’m feeling healthier this morning, though time is still short, so I’ll give a quick summary of the details:

— As you can see in the photo (taken with my phone at Starbucks just before I took these to the post office to mail them), I signed a contract for a new book. Four copies, because lawyers.

— The contract is with Oneworld Publications in the UK, who had a best-seller on that side of the pond with How to Teach Quantum Physics to Your Dog.

Read more

For decades, researchers have been seeking ways to help the millions of people with spinal cord injuries regain control of their limbs, with frustratingly little success. The new device provides a rare glimmer of hope. Scientists at the University of Louisville’s Kentucky Spinal Cord Injury Research Center, where Meas and three other patients received their im­plants, speculate that the stimu­lation may be reawakening connections between the brain and the body. “There’s residual circuitry that we can recover that no one realized was possible to do,” says Reggie Edgerton, director of the Neuromuscular Research Laboratory at the University of California, Los Angeles. “We were shocked.”

Some of the benefits, such as better bowel and bladder control and improved blood pressure, remain even when the device is switched off. Electrical stimulation isn’t a cure, of course. The patients still can’t walk. And the stimulation must be customized for each individual, a time-consuming process. But it’s an enormous advance nonetheless. Says Edgerton, “It opens up a whole new mechanism of recovery.”

Read more