Toggle light / dark theme

Interesting study on brain receptors.


Researchers from UZH have discovered how the perception of meaning changes in the brain under the influence of LSD. The serotonin 2A receptors are responsible for altered perception. This finding will help develop new courses of pharmacotherapy for psychiatric disorders such as depression, addictions or phobias.

Humans perceive everyday things and experiences differently and attach different meaning to pieces of music, for instance. In the case of psychiatric disorders, this perception is often altered. For patients suffering from addictions, for instance, drug stimuli are more meaningful than for people without an addiction. Or patients with phobias perceive the things or situations that scare them with exaggerated significance compared to healthy people. A heightened negative perception of the self is also characteristic of depressive patients. Just how this so-called personal relevance develops in the brain and which neuropharmacological mechanisms are behind it, however, have remained unclear.

Researchers from the Department of Psychiatry, Psychotherapy and Psychosomatics at Zurich University Hospital for Psychiatry now reveal that LSD influences this process by stimulating the serotonin 2A receptor, one of the 14 serotonin receptors in the brain. Before the study began, the participants were asked to categorize 30 pieces of music as personally important and meaningful or without any personal relevance. In the subsequent experiment, LSD altered the attribution of meaning compared to a placebo: “Pieces of music previously classified as meaningless suddenly became personally meaningful under the influence of LSD,” explains Katrin Preller, who conducted the study in conjunction with Professor Franz Vollenweider and the Neuropsychopharmacology and Brain Imaging research team.

Read more

Scientists, have identified a brain hormone that can trigger fat burning in the gut.

Researchers from The Scripps Research Institute (TSRI) in the US found a brain hormone that specifically and selectively stimulates f at metabolism, without any effect on food intake.

The findings, published in the journal Nature Communications, in animal models could have implications for future pharmaceutical development.

Read more

TDP-43 Protien tied to Alzheimers according to a Mayo Clinic Study.


Since the time of Dr. Alois Alzheimer himself, two proteins (beta-amyloid (Aβ) and tau) have become tantamount to Alzheimer’s disease (AD). But a Mayo Clinic study challenges the perception that these are the only important proteins accounting for the clinical features of the devastating disease.

In a large clinico-imaging pathological study, Mayo Clinic researchers demonstrated that a third protein (TDP-43) plays a major role in AD pathology. In fact, people whose brain was TDP positive were 10 times more likely to be cognitively impaired at death compared to those who didn’t have the protein, showing that TDP-43 has the potential to overpower what has been termed resilient brain aging. The study was published in the journal Acta Neuropathologica.

Read more

Babies born prematurely don’t use their expectations about the world to shape their brains as babies born at full term do, important evidence that this neural process is important to development.

The findings offer clues to the mystery of why otherwise healthy babies born prematurely face higher risk of developmental delays as they grow, according to researchers at Princeton University, the University of Rochester Medical Center and the University of Rochester.

Read more

Growing organs in the lab is an enduring sci-fi trope, but as stem cell technology brings it ever closer to reality, scientists are beginning to contemplate the ethics governing disembodied human tissue.

So-called organoids have now been created from gut, kidney, pancreas, liver and even brain tissue. Growing these mini-organs has been made possible by advances in stem cell technology and the development of 3D support matrices that allow cells to develop just like they would in vivo.

Unlike simple tissue cultures, they exhibit important structural and functional properties of organs, and many believe they could dramatically accelerate research into human development and disease.

Read more

Could we eventually see a day where we have cell circuitry nanobot pill that eliminates hunger and obesity as replacement to gastric bypasses? Maybe.


The human body responds to starving conditions, such as famine, to promote the chance of survival. It reduces energy expenditure by stopping heat production and promotes feeding behavior. These “hunger responses” are activated by the feeling of hunger in the stomach and are controlled by neuropeptide Y (NPY) signals released by neurons in the hypothalamus. However, how NPY signaling in the hypothalamus elicits the hunger responses has remained unknown.

Sympathetic motor neurons in the medulla oblongata are responsible for heat production by brown adipose tissue (BAT). Researchers centered at Nagoya University have now tested whether the heat-producing neurons respond to the same hypothalamic NPY signals that control hunger responses. They injected NPY into the hypothalamus of rats and tested the effect on heat production. Under normal conditions, blocking inhibitory GABAergic receptors or stimulating excitatory glutamatergic receptors in the sympathetic motor neurons induced heat production in BAT. After NPY injection, stimulating glutamatergic receptors did not produce heat, but inhibiting GABAergic receptors did. The study was recently reported in Cell Metabolism.

Retrograde and anterograde tracing with fluorescent dyes revealed which brain region provided the inhibitory GABAergic inputs to heat-producing motor neurons.

Read more

The brain is the fattiest organ in your body made up of 60% fat, the dry part that is. 75% of your brain is actually water which houses 100,000 miles of blood vessels that use up 20% of all your oxygen and blood. It’s an amazing piece of hardware. Of all the moonshot projects out there, the ones that relate to augmenting the brain are perhaps the most fascinating. Companies like Kernel have actually succeeded in writing long-term memories to a chip – well, at least 80% of them. When that number hits 100%, the sky is the limit to what we can do with the brain.

If you want a graphic image of what the future holds, imagine a robotic arm on top of your table (no wires) moving its fingers or trying to grab something powered only by someone’s thought. After all those Terminator movies, this could be a bit creepy. You may not get Terminator at your doorstep just yet, but someone with neuroprosthesis might just be ringing your doorbell a few years from now.

Neuroprosthetics or neuroprosthesis is a field of biomedical engineering and neuroscience concerned with the development of neural prostheses which are a series of devices that can substitute your brain’s motor, sensory or cognitive functionality that might have been damaged as a result of an injury or a disease.

Read more