Toggle light / dark theme

New research on Parkinson and holds additional insights in cell & neuro technology.


Autophagy functions as a main route for the degradation of superfluous and damaged constituents of the cytoplasm. Defects in autophagy are implicated in the development of various age-dependent degenerative disorders such as cancer, neurodegeneration and tissue atrophy, and in accelerated aging. To promote basal levels of the process in pathological settings, we previously screened a small molecule library for novel autophagy-enhancing factors that inhibit the myotubularin-related phosphatase MTMR14/Jumpy, a negative regulator of autophagic membrane formation. Here we identify AUTEN-99 (autophagy enhancer-99), which activates autophagy in cell cultures and animal models. AUTEN-99 appears to effectively penetrate through the blood-brain barrier, and impedes the progression of neurodegenerative symptoms in Drosophila models of Parkinson’s and Huntington’s diseases. Furthermore, the molecule increases the survival of isolated neurons under normal and oxidative stress-induced conditions. Thus, AUTEN-99 serves as a potent neuroprotective drug candidate for preventing and treating diverse neurodegenerative pathologies, and may promote healthy aging.

Read more

Another new interface method.


Engineering researchers at The University of Texas at Austin have designed ultra-flexible, nanoelectronic thread (NET) brain probes that can achieve more reliable long-term neural recording than existing probes and don’t elicit scar formation when implanted.

The researchers described their findings in a research article published in Science Advances (“Ultraflexible nanoelectronic probes form reliable, glial scar–free neural integration”).

ultra-flexible probe in neural tissue

This is a rendering of the ultra-flexible probe in neural tissue gives viewers a sense of the device’s tiny size and footprint in the brain.

Read more

The problems that I have seen when limiting the topic of quantum mechanics to the human mind topic is that the relationship around Quantum Mechanics to biology is missed completely. For example, it has only be in the recent few years that scientists began to understand Quantum Mechanics Action of ELF electromagnetic fields and its relationship to human cells. And, this find has open valuable research in how cells can (through electromagnetic fields can spin a low temperatures) mimic telepathy communicating between the human cells.


Nobody understands what consciousness is or how it works. Nobody understands quantum mechanics either. Could that be more than coincidence?

Read more

Scientists have discovered a groundbreaking immunotherapy combination that kills brain cancer, promotes long-term immunity and is highly effective against breast cancer and myeloma.

Researchers at the Children’s Hospital of Eastern Ontario (CHEO) in Ottawa had the promising findings published Wednesday in the journal ‘Nature Communications’.

The study outlines how the team developed a unique combination of drugs known as SMAC Mimetics and immune checkpoint inhibitors (ICIs) that produce high kill rates for cancer tumor cells in mice.

Read more

This video is part of a series on genius, in proud collaboration with 92Y’s 7 Days of Genius Festival.

In the late 1990s, scientists thought they were close to locating specific genes that controlled for human intelligence in all its manifestations: musical genius, analytical acumen, physical prowess, etc. But the truth turns out to be more complicated, says Harvard psychologist and linguist Steven Pinker. There are many genes — perhaps thousands — that affect human intelligence, and while manipulating them may have predictable benefits, the adverse consequences remain unpredictable. Thus experimenting with our so-called intelligence genes will likely be met with high levels of skepticism in caution. It’s proof, says Pinker, that technological advancement doesn’t always march to the drum beat of inexorable forward progress.

Read more

Nice write up on the physical sensory parts of the brain and central nervous system. However, everyone is proving and continues to prove that with the electromagnetic spin properties tied to human cells is showing that there is the additional layer of cell to cell communication occurring within the human body as well as these cells which are charged are also able to connect with other charged particles in a room or location. My guess is we will need all to effectively enable meaningful/ useful system intelligence to provide real pragmatic value.


Not everyone is Fred Astaire or Michael Jackson, but even those of us who seem to have two left feet have got rhythm–in our brains. From breathing to walking to chewing, our days are filled with repetitive actions that depend on the rhythmic firing of neurons. Yet the neural circuitry underpinning such seemingly ordinary behaviors is not fully understood, even though better insights could lead to new therapies for disorders such as Parkinson’s disease, ALS and autism.

Recently, neuroscientists at the Salk Institute used stem cells to generate diverse networks of self-contained spinal cord systems in a dish, dubbed circuitoids, to study this rhythmic pattern in neurons. The work, which appears online in the February 14, 2017, issue of eLife, reveals that some of the circuitoids–with no external prompting–exhibited spontaneous, coordinated rhythmic activity of the kind known to drive repetitive movements.

Read more

I believe we’re already doing this in other programs around SWARM Data Intelligence. Wish they would re-leverage other US Govt. programs and their work…


WASHINGTON. The Intelligence Advanced Research Projects Activity (IARPA), part of the Office of the Director of National Intelligence, has announced that it is embarking on a multiyear research effort to develop and test large-scale, structured collaboration methods to improve reasoning. If the project is successful, the Crowdsourcing Evidence, Argumentation, Thinking and Evaluation (known as “CREATE”) program will improve analysts’ and decisionmakers’ understanding of the evidence and assumptions that support or conflict with their conclusions.

The agency is confident that the knowledge gained through this project will improve its ability to provide accurate, timely, and well-supported analyses of the complex issues and questions facing the community.

“CREATE will combine crowdsourcing with structured techniques to improve reasoning on complex analytic issues,” states Steven Rieber, IARPA program manager. “The resulting technology will be valuable not just to intelligence analysis but also to science, law, and policy — in fact, to any domain where people must think their way through complex questions.” IARPA believes that the CREATE program will help analysts explain to decisionmakers why judgments were made, why seemingly plausible alternatives were rejected, and the major gaps in what is known; CREATE also intends to develop and test structured crowdsourcing platforms that meet these needs.

Read more

https://youtube.com/watch?v=6ClSRrM84Gk

More on Intel’s plans for a Quantum Neuromorphic chip to mimic the brain on QC. Should be interesting as they will be researching Quantum Biology/ Biosystem technology of the human brain to make this happen. And, will also be assessing cell electromagnetic spin, much of the other quantum mechanic properties of the brain. So, consider the race is on now for a Quantum Biosystem brain. And, the question now is which one will get there 1st and which type? DARPA’s Quantum Biosystem enhanced brain or one like Intel’s Quantum Neuromorphic chip mimicking the human brain?

Things are about to become very interesting for all.


A future beyond today’s PC technology is prepared by Intel’s research into quantum computing. (Photo : Strange Video Zone / YouTube)

As it prepares for the post-Moore’s Law era, the world’s largest chip company Intel, researches new paths toward designing computers of immense power by exploiting the quantum mechanics.

According to MIT Technology Review, chip maker Intel is involved in the race to build quantum computers that should offer immense processing power. Competitors Google, Microsoft and IBM are also developing quantum components different from the ones to be found in today’s computers. But what’s different in Intel’s approach is the fact that the chip maker company is trying to adapt the silicon transistor of existing computers for the task.

Read more