Toggle light / dark theme

Playing God is a common objection to developing technologies to increase human lifespan and yet it is never used in relation to current therapies already available.


Here I’ll point out another of the articles going up at the Life Extension Advocacy Foundation, this time on the topic of the naturalistic fallacy where it occurs in opposition to healthy life extension. Our community would like to build medical therapies that address the causes of aging, thereby ending age-related disease and greatly extending healthy human life spans. It has always surprised me to find that most people, at least initially, object to this goal. It seems perfectly and straightforwardly obvious to me that aging to death, suffering considerably along the way, is just as much a problem to be overcome as any other medical condition that causes pain and mortality. Yet opposition exists, and that opposition is one of the greatest challenges faced when raising funding and pushing forward with research and development of rejuvenation therapies.

When it comes to treating aging as a medical condition the naturalistic fallacy is voiced in this way: aging is natural, what is natural is good, and therefore we shouldn’t tamper with aging. If you look around at your houses, your computers, your modern medicine, and consider that such an objection is perhaps just a little late to the game, and hard to hold in a self-consistent manner, then you’re probably not alone. Notably, the same objection is rarely brought up when it comes to treating specific age-related diseases, or in the matter of therapies that already exist. People who are uncomfortable about radical changes to the course of aging and who speak out against the extension of human life are nonetheless almost all in favor of cancer research, treatments for heart disease, and an end to Alzheimer’s disease. Yet age-related diseases and aging are the same thing, the same forms of damage and dysfunction, only differing by degree and by the names they are given.

Read more

Researchers at MIT’s Computer Science and Artificial Intelligence Laboratory have developed a new computational model of a neural circuit in the brain, which could shed light on the biological role of inhibitory neurons — neurons that keep other neurons from firing.

The model describes a neural circuit consisting of an array of input neurons and an equivalent number of output neurons. The circuit performs what neuroscientists call a “winner-take-all” operation, in which signals from multiple input neurons induce a signal in just one output neuron.

Using the tools of theoretical computer science, the researchers prove that, within the context of their model, a certain configuration of inhibitory neurons provides the most efficient means of enacting a winner-take-all operation. Because the model makes empirical predictions about the behavior of inhibitory neurons in the brain, it offers a good example of the way in which computational analysis could aid neuroscience.

Read more

Cell powerhouses are typically long and lean, but with brain injury such as stroke or trauma, they can quickly become bloated and dysfunctional, say scientists who documented the phenomena in real time for the first time in a living brain.

The scientists also found that without giving these mitochondria anything but time, they often resume their usual healthy shape once blood and oxygen were restored to mild or moderately damaged tissue, said Dr. Sergei Kirov, neuroscientist in the Department of Neurosurgery at the Medical College of Georgia at Augusta University.

“We believe this is good evidence that mitochondria can recover their normal form following brief periods of ischemia from stroke or trauma and that drugs that enhance their recovery may improve overall recovery from these sorts of injuries,” Kirov said.

Read more

Scientists identify the physical connection through which the prefrontal cortex inhibits instinctive behavior

From fighting the urge to hit someone to resisting the temptation to run off stage instead of giving that public speech, we are often confronted with situations where we have to curb our instincts. Scientists at the European Molecular Biology Laboratory (EMBL) have traced exactly which neuronal projections prevent social animals like us from acting out such impulses. The study, published in Nature Neuroscience, could have implications for schizophrenia and mood disorders like depression.

See Also: The power of expectation can restrain hyper-emotional memories in the brain

Read more

As I stated earlier, another example where we will see a convergence of tech and bio especially as we emerge QC forward and synbio technology such as gene/ cell circuitry. My guess when we mature these fields along with minerals like diamonds/ gem crystalized formation and their use in QC tech, we will began to wonder why we didn’t figure this out sooner.


When Edward Boyden was helping develop a tool to turn neurons on and off with light at Stanford a decade ago, he had a strong feeling it would spread far and wide. Even so, he’s been surprised by how quickly its fame has come.

“What I hadn’t quite anticipated was how fast it would take off,” said Boyden, who now leads the MIT Media Lab’s synthetic neurobiology research group. “It was almost as if the field was ready for the technology.”

It certainly was. On Sunday, Boyden and Stanford neuroscientist Dr. Karl Deisseroth, whose lab Boyden worked in, each received $3 million Breakthrough Prizes for their work on optogenetics.

Read more

Excellent read for the new year.


We’re all familiar with the concept of sports coaching and personal trainers to help people achieve peak fitness, but what about the idea of a mind coach to help you reach your mental potential?

Some people are now turning to mind training to achieve their goals and see doing “inner work” as one important factor of success.

Sydney performance coach Jacob Galea has been working with clients for 10 years to strengthen their mental capacity and believes having a good life coach or mentor can help.

Read more

Another example where we will see a convergence of tech and bio especially as we emerge QC forward and synbio technology such as gene/ cell circuitry. We are finding so many synergies between Quantum and bio including the brain/ neuro networking, cell technology, human framework and pathways, etc. My guess when we mature these fields along with the minerals fiend we will began to wonder why we didn’t figure this out sooner.


New technique illuminates role of previously inaccessible proteins involved in health and disease.

Read more

My grandparents taught me the importance of a power nap; and it does help.


We’re not sure what the boss would have to say about it if you suddenly downed tools and made a decision to have a little sleep, but new research has found that taking an hour’s nap after lunch can have a number of health benefits, including preventing brain ageing.

The study conducted among the older Chinese men by a team of worldwide researchers concentrated mainly on post-lunchtime napping and its impact on the health of elderly people.

Do you hesitate to take a sleep after having your lunch, now you should not.

Read more

This kit by Royal College of Art graduate Heeju Kim uses sweets to recreate the tongue-tying experience of living with autism. Kim created three tools and a mobile application as part of the project, which is titled An Empathy Bridge for Autism.

A set of six awkwardly shaped lollipops and candies impede tongue movement in various ways. They make it hard for users to hold a conversation, conveying how unclear pronunciation has an impact on autistic individuals.

An augmented-reality headset is worn over the eyes and connects to a smartphone to alter the user’s perception of what’s in front of them. It restricts the view of their periphery, gives them double vision or obscures their focus with a patch of black.

Read more

In Brief

  • Peter Diamandis, founder and chairman of the XPRIZE Foundation, thinks the human species is headed for an evolutionary transformation.
  • The evolution of life has slowly unfolded over 3.5 billion years; but its pace has rapidly increased in recent years. Diamandis believes this heralds the next, exciting stages of human evolution.

In the next 30 years, humanity is in for a transformation the likes of which we’ve never seen before—and XPRIZE Foundation founder and chairman Peter Diamandis believes that this will give birth to a new species. Diamandis admits that this might sound too far out there for most people. He is convinced, however, that we are evolving towards what he calls “meta-intelligence,” and today’s exponential rate of growth is one clear indication.

In an essay for Singularity Hub, Diamandis outlines the transformative stages in the multi-billion year pageant of evolution, and takes note of what the recent increasing “temperature” of evolution—a consequence of human activity—may mean for the future. The story, in a nutshell, is this—early prokaryotic life appears about 3.5 billion years ago (bya), representing perhaps a symbiosis of separate metabolic and replicative mechanisms of “life;” at 2.5 bya, eukaryotes emerge as composite organisms incorporating biological “technology” (other living things) within themselves; at 1.5 bya, multicellular metazoans appear as eukaryotes are yoked together in cooperative colonies; and at 400 million years ago, vertebrate fish species emerge onto land to begin life’s adventure beyond the seas.

Read more