Toggle light / dark theme

Just a few doses of an experimental drug can reverse age-related declines in memory and mental flexibility in mice, according to a new study by UC San Francisco scientists. The drug, called ISRIB, has already been shown in laboratory studies to restore memory function months after traumatic brain injury (TBI), reverse cognitive impairments in Down Syndrome, prevent noise-related hearing loss, fight certain types of prostate cancer, and even enhance cognition in healthy animals.

In the new study, published Dec. 1, 2020, in the open-access journal eLife, researchers showed rapid restoration of youthful cognitive abilities in aged mice, accompanied by a rejuvenation of brain and immune cells that could help explain improvements in brain function.

“ISRIB’s extremely rapid effects show for the first time that a significant component of age-related cognitive losses may be caused by a kind of reversible physiological “blockage” rather than more permanent degradation,” said Susanna Rosi, PhD, Lewis and Ruth Cozen Chair II and professor in the departments of Neurological Surgery and of Physical Therapy and Rehabilitation Science.

**Peroxisomes are compartments where cells turn fatty molecules into energy and useful materials, like the myelin sheaths that protect nerve cells. In humans, peroxisome dysfunction has been linked to severe metabolic disorders, and peroxisomes may have wider significance for neurodegeneration, obesity, cancer and age-related disorders.**

Peroxisomes are also highly conserved, from plants to yeast to humans, and Bartel said there are hints that these structures may be general features of peroxisomes.

“Peroxisomes are a basic organelle that has been with eukaryotes for a very long time, and there have been observations across eukaryotes, often in particular mutants, where the peroxisomes are either bigger or less packed with proteins, and thus easier to visualize,” she said. But people didn’t necessarily pay attention to those observations because the enlarged peroxisomes resulted from known mutations.

The researchers aren’t sure what purpose is served by the subcompartments, but Wright has a hypothesis.

“When you’re talking about things like beta-oxidation, or metabolism of fats, you get to the point that the molecules don’t want to be in water anymore,” Wright said. “When you think of a traditional kind of biochemical reaction, we just have a substrate floating around in the water environment of a cell—the lumen—and interacting with enzymes; that doesn’t work so well if you’ve got something that doesn’t want to hang around in the water.”

“So, if you’re using these membranes to solubilize the water-insoluble metabolites, and allow better access to lumenal enzymes, it may represent a general strategy to more efficiently deal with that kind of metabolism,” he said.

Bartel said the discovery also provides a new context for understanding peroxisomal disorders.

“This work could give us a way to understand some of the symptoms, and potentially to investigate the biochemistry that’s causing them,” she said.


In his first year of graduate school, Rice University biochemist Zachary Wright discovered something hidden inside a common piece of cellular machinery that’s essential for all higher order life from yeast to humans.

What Wright saw in 2015—subcompartments inside organelles called peroxisomes—is described in a study published today in Nature Communications.

“This is, without a doubt, the most unexpected thing our lab has ever discovered,” said study co-author Bonnie Bartel, Wright’s Ph.D. advisor and a member of the National Academy of Sciences. “This requires us to rethink everything we thought we knew about peroxisomes.”

Dr leonard hayflick — father of cell senescence!


Dr. Leonard Hayflick, is Professor of Anatomy, University of California, San Francisco School of Medicine, where he has been part of the faculty since 1988.

Dr. Hayflick received his Ph.D. at the University of Pennsylvania, did a post-doctoral fellowship at the University of Texas under the tutelage of the renowned cell culturist Prof. Charles Pomerat, and then returned to Philadelphia, where he spent ten years as an Associate Member of the Wistar Institute, and two years as an Assistant Professor of Research Medicine at the University of Pennsylvania.

Dr. Hayflick is extremely well known for his research in a range of domains including cell biology, virus vaccine development, and mycoplasmology.

In 1962 he discovered that, contrary to what was believed since the turn of the century, cultured normal human and animal cells have a limited capacity to replicate. This phenomenon became known as “The Hayflick Limit” which became a discovery that overturned a dogma that existed since early in the twentieth century and focused attention on the cell as the fundamental location of age changes.

Dr. Hayflick is a member of numerous national and international scientific and public boards of directors and committees. He is now, or has been, on the Editorial Boards of more than ten professional journals including as Editor-in-Chief of the international journal “EXPERIMENTAL GERONTOLOGY”

He is a member of twenty scientific and professional societies in which he has held high offices including President of the Gerontological Society of America, a founding member of the Council of the National Institute on Aging, NIH and Chairman of its’ Executive Committee, consultant to the National Cancer Institute, the World Health Organization and member of several scientific advisory boards. He was also Chairman of the Scientific Review Board of the American Federation for Aging Research where he was also a Vice President and a Member of the Board of Directors.

Dr. Hayflick is the author of the popular book, “How and Why We Age” and was also a consultant at Genentech from a year after its founding and for the next 25 years where he was instrumental in developing their technology for growing animal cells in fermentation tanks in which most of their billion $$ blockbuster biologics products were produced.

Scientists stress that the symptoms of space travel aren’t exactly the same as aging, and many changes reverse themselves once people return to Earth, but the comparisons are still useful. Spaceflight is an immersive experience that spares no traveler, while aging happens to every Earthling whether we like it or not. As such, life in space is a good model for understanding aging as a chronic process, Bailey says. The barren otherworld of outer space could even reveal new ways to protect ourselves against the process of growing old.


Space travel induces bodily changes that are remarkably similar to growing old, providing a unique way to boost medical research.

Longevity biotech firm BioAge Labs is readying itself for clinical trials after raising a whopping $90 million Series C funding round. The company revealed it will be moving its lead platform-derived therapies, BGE-117 and BGE-175, into Phase 2 clinical trials in the first half of 2021.

Longevity. Technology: As the developer of an AI platform that maps the molecular pathways impacting human Longevity, we’ve followed developments at BioAge with great interest. With two compounds ready to enter the clinic next year, and more on the way, this company is fast-becoming one of Longevity’s most exciting prospects.

The new funds will be used to develop BioAge’s portfolio of therapies for increasing healthspan and lifespan, as well as to augment its AI platform, and further expand its capabilities to test drug candidates in predictive models of human diseases of aging.

Researchers claim to have reversed ageing in mice. It has long been believed that if we understand the causes of ageing, it may be possible to reverse it. New work on mice shows that it is possible to cure vision loss caused by old age or injury. Researchers think that this effect may depend on rewinding the ‘biological clock’ which marks the age of cells, suggesting that the cells in the eye have been made functionally younger.

Read the paper here: https://www.nature.com/articles/s41586-020-2975-4

Sign up for the Nature Briefing: An essential round-up of science news, opinion and analysis, free in your inbox every weekday: https://go.nature.com/371OcVF

Harvard Medical School scientists have successfully restored vision in mice by turning back the clock on aged eye cells in the retina to recapture youthful gene function.

The team’s work, described Dec. 2 in Nature, represents the first demonstration that it may be possible to safely reprogram complex tissues, such as the nerve of the eye, to an earlier age.

In addition to resetting the cells’ aging clock, the researchers successfully reversed vision loss in animals with a condition mimicking human glaucoma, a leading cause of blindness around the world.

Simulations that model molecular interactions have identified an enzyme that could be targeted to reverse a called cellular senescence. The findings were validated with laboratory experiments on and equivalent tissues, and published in the Proceedings of the National Academy of Sciences (PNAS).

“Our research opens the door for a new generation that perceives aging as a reversible biological phenomenon,” says Professor Kwang-Hyun Cho of the Department of Bio and Brain engineering at the Korea Advanced Institute of Science and Technology (KAIST), who led the research with colleagues from KAIST and Amorepacific Corporation in Korea.

Cells respond to a variety of factors, such as oxidative stress, DNA damage, and shortening of the telomeres capping the ends of chromosomes, by entering a stable and persistent exit from the . This process, called cellular senescence, is important, as it prevents damaged from proliferating and turning into . But it is also a natural process that contributes to aging and . Recent research has shown that cellular senescence can be reversed. But the laboratory approaches used thus far also impair tissue regeneration or have the potential to trigger malignant transformations.

https://www.BetaGlucanShop.com — Natural killer cells (NK cells) are the most aggressive cells of your immune system and kills through apoptosis, also known as programmed cell death. These innate immune cells are key players against viral infections and cancer growth.

Natural killer cells help prevent metastasis by killing abnormal cells and tumour cells. Metastasis is the spread of cancer from one part of the body to another. Beta glucans are used in immunotherapy as they may help (depending on type) the immune system distinguish between healthy and abnormal cells like cancer cells, and thus direct the immune cells to engage cancer cells.

Research shows us that beta 1,3/1,6 glucans can trigger groups of immune cells including macrophages, neutrophils, monocytes, natural killer cells and dendritic cells for activity. Clinical human studies demonstrate that Wellmune Beta Glucan significantly increases the percent of active immune cells available to defend your body. Wellmune increases mobilization of innate immune cells to the site of a challenge, enabling faster recognition and neutralization of foreign intruders and killing (phagocytosis) of foreign challenges, resulting in a more complete immune response.

Studies on Wellmune Beta Glucan shows that this proprietary strain of patented yeast beta 1,3/1,6 glucan primes macrophages, neutrophils and natural killer cells to defend your body against a broad range of infections, other foreign challenges, and assist in the removal of damaged cells.

Just a few doses of an experimental drug can reverse age-related declines in memory and mental flexibility in mice, according to a new study by UC San Francisco scientists. The drug, called ISRIB, has already been shown in laboratory studies to restore memory function months after traumatic brain injury (TBI), reverse cognitive impairments in Down Syndrome, prevent noise-related hearing loss, fight certain types of prostate cancer, and even enhance cognition in healthy animals.

In the new study, published December 1, 2020 in the open-access journal eLife, researchers showed rapid restoration of youthful cognitive abilities in aged mice, accompanied by a rejuvenation of brain and that could help explain improvements in brain function.

“ISRIB’s extremely rapid effects show for the first time that a significant component of age-related cognitive losses may be caused by a kind of reversible physiological “blockage” rather than more permanent degradation,” said Susanna Rosi, Ph.D., Lewis and Ruth Cozen Chair II and professor in the departments of Neurological Surgery and of Physical Therapy and Rehabilitation Science.