Toggle light / dark theme

Procreative sexual activity has been at the heart of the evolutionary process for millions of years. Until recently, the situation was simple: a male and a female had sexual intercourse in order to produce offspring and thus ensure survival. But, in humans, there are certain signs that something profound may be happening, signs which may be pointing to the beginning of Radical Life Extension. I argue that reproduction is a tactic used by natural evolution in order to increase complexity and thus, survival. Reproduction equals aging. But, as we now may have the capability to increase complexity through technology, the reproduction stratagem may be downgraded and thus aging will also decrease.

Here, the term ‘Radical Life Extension’ specifically means the abolition of aging. Without the process of aging, however it is defined, people will not suffer age-related degenerative conditions, and they will not die of old age. Therefore, the terms ‘Radical Life Extension’,’ Indefinite Lifespans’, and ‘cure of age-related diseases’, all convey the same meaning: a life without aging. It is important to emphasize that I consider the process of aging to be directly related to that of reproduction. I argue that the process of reproduction is necessarily implicated in the process of aging (in other words, aging happens because we need to reproduce), as explained in my argument number 3 below.

In this context, I would also like to remark that by ‘reproduction’ I specifically refer to sexual (i.e. genetic) reproduction. Evolution may still continue to use (or begin to use) other forms of reproduction such as memetic reproduction and reproduction of noemes.

The main thrust of my discussion is that we are now beginning to witness the first tentative steps leading away from the significance of procreative sexual intercourse and towards the global emergence of other, sustained, non-procreative sexual preferences.

Let me explore a series of logical arguments which lead to an inescapable conclusion. Note that I do not imply a sentient deity in my discussion. I do not infer any entity that possesses any conscious awareness which transcend the laws of nature.

Argument 1
Nature, through evolution, tends to progress towards higher levels of complexity. To put it another way, within natural laws there are basins of attraction which necessarily tend to cause a transition from simple to complex, and therefore lead to the emergence of new characteristics. The Belgian Cyberneticist Francis Heylighen has listed these characteristics in increasing order of complexity, as follows:
* mobility
* sensation
* learning
* intelligence
* morality
* mimicry
* language
* culture
* technology.

He states that “The idea is that all life, wherever it occurs in the universe, will develop those traits of universal fitness, in roughly the same chronological order. It means that those traits are built into the laws of nature. They are statistically inevitable. It is as if nature ‘wants’ us to go in a certain direction. This is what gives biological evolution its clear directionality”.

The above list is not final, and there is no implication that technology is the end stage of human evolution. The point I am making here is a general one: that evolution tends to higher complexity, whatever this complexity might be, in order to ensure survival within a specified niche.

Argument 2
Based on this list, it is obvious that we are currently on the highest stage of natural evolution, that of technology. There will certainly be higher end-points in the future. In fact, I can think of at least two such stages which we have not yet achieved, but at this point I argue that this has profound implications on the issues of aging and radical life extension. If the general direction of evolution is towards increasing complexity and survival, why do we age and die? The answer is straightforward. Within a tendency to progress from simple to complex, evolution has selected reproduction (and thus aging – see argument 3) as a mechanism for maximising the use of thermodynamical resources, and so to ensure the survival of the species.

Argument 3
Until now, the clear role of reproduction was to maximise the chances of survival and thus progress to a higher stage in the list above. However, in order for reproduction to be successful, the genetic code (germ-line) must be maintained. An inequality of resources available for repair and maintenance between germ line and somatic cells means that, while the integrity of the germ-line is fully guaranteed, that of somatic cells is not. Therefore we (our bodies) must age and die through aging. Survival is thus assured, albeit it is the survival of the germ-line and that of the species, and not the survival of our own individual selves.

Argument 4
The main tendency in nature (i.e. the direction of evolution), through a relentless progress of increasing complexity, is to stay alive. Ultimately, what matters is to survive. The basins of attraction mentioned above exist because they ensure survival. Reproduction is just a means for assuring survival in the face of adverse thermodynamical resources. If there was a way to survive without reproduction, then the process of reproduction would be drastically downgraded. We may be now able to survive, i.e. live (dramatically) longer, through the use of technology and not necessarily through reproduction. There are three types of technology that is relevant here:
* Biomedical Technology
* General mechanical technology (includes AI)
* Digital Communications Technology

I have argued elsewhere that it is this last type of technology that is the most promising in achieving Radical Life Extension. In humans, technology is both the result of natural selection and the cause of the end of natural selection.

Argument 5
If there are any signs that reproduction is being downgraded then it means that the above arguments are likely to be correct, and that the process of long individual survival has begun. One such preliminary sign is the decline in procreative sexual practice and the relatively widespread emergence of other practices or preferences. If nature somehow ‘senses’ that survival is now being assured through technology, then the pressure for finding a mate of the opposite sex and reproduce would be eased, allowing the widespread emergence of other non-reproductive sexual practices such as homosexuality, non-procreative polyamory, hedonist polysexuality or pansexuality. It is likely therefore that we are now entering a period of human evolution which will not entirely depend on reproduction. Reduced reproduction means that more resources are available to be passed on to the soma (body) and thus radical longevity becomes more likely.

How can the technological environment in which one finds themselves impact sexuality? There is a train of logical arguments which answer this question:
• If we accept that evolution generally tends to higher complexity and sophistication (including technological sophistication) in order to increase survival, and
• If we accept that a stage of significant technological achievement has now been reached (or is likely to be reached within 20 years), and
• If, as long as the human species survives, it is immaterial whether its survival is achieved through reproduction or through any other means, and
• If one of these other means is technology,

then, it is also logical to assume that genetic reproduction is now less important than before because high complexity/intelligence can be achieved through technology and through the prolonged survival of the individually- enhanced human, and not necessarily through a random process of natural selection (birth/procreation/death). If genetic reproduction is now not as important as before, any tendency to conventional procreative sexuality will diminish. Thus, other sexual preferences and practices will become more common place.

And just to push the discussion further into the realms of speculation, one should wonder if the progressive global reduction of sperm count, the increased incidence of undescended testicles, and the first signs that men are becoming less ‘macho’, have any relationship with my argument. It may be hypothesized that, as the reproductive practice is now being downgraded, the health of male sexual organs has begun to be affected, in preparation for a procreative shutdown, at least in some sections of humanity.

Finally, I have been asked: Can using computers make me gay? This is a captious statement which is both true and false, but it helps illustrate a point. Based on the arguments above, increased engagement with technology at a significant level, and by a significant number of people, will have an impact on natural selection and thus on procreation. It will diminish the hitherto immense pressure to find a mate and have offspring, and so other sexual preferences will emerge globally. The discussion does not refer to single isolated individuals but to humankind as a whole.

For more information on our research in these areas see

This article was originally published here:

Sexuality, Evolution and the Abolition of Aging

By Avi Roy, University of Buckingham and Anders Sandberg, University of Oxford

Men who are unemployed for more than two years show signs of faster ageing in their DNA, according to a study published today in the journal PLOS ONE.

Researchers at the University of Oulu, Finland and Imperial College, London arrived at this conclusion by studying blood samples collected from 5,620 men and women born in Northern Finland in 1966. The researchers measured the lengths of telomeres in their white blood cells, and compared them with the participants’ employment history for the prior three years, and found that extended unemployment (more than 500 days in three years) was associated with shorter telomere length.

Telomeres are repetitive DNA sequences at the ends of chromosomes, which protect the chromosomes from degrading. With every cell division, it appears that these telomeres get shorter. And the result of each shortening is that these cells degrade and age.

When cells are grown in a lab, their telomeres do indeed shorten each time the cells divide. This process can be used to find a cell’s “expiry date”, a prediction of when that cell will run out of telomeres and stop dividing. However, this does not seem to relate to the actual health of the cells.

In the new study, the researchers found that that on average, men who had been unemployed for more than two of the preceding three years were more than twice as likely to have short telomeres compared to men who were continuously employed. In women, there was no association between unemployment status and telomere length.

The researchers accounted for telomere length differences resulting from medical conditions, obesity, socio-economic status and early childhood environment.

Previous studies, noted by the study authors, have found a correlation between shorter telomeres and higher rates of age-related diseases like Type 2 diabetes and heart disease. The authors conclude that the reduction in these men’s telomeres may have been the result from the stress of long-term unemployment, adding to evidence of a direct connection between prolonged unemployment and poor health.

An abstract concept

Employment is something very abstract; an employed and unemployed body are apparently more or less the same. So it might seem surprising that such an abstract thing as employment can affect a body on the cellular level. But the same is true for how stimuli affect our brains: remote objects trigger electrochemical cascades in our visual system – and when we learn new things, gene expression in the brain changes. We are interactive creatures, with innumerable stimuli that are constantly shaping multiple processes in our bodies. In this sense, the hypothesis that employment experience has cellular effects is not surprising.

This was an association study, which means than under certain set of circumstances two variables are statistically linked. This study is therefore incapable of genuinely predicting whether unemployment is the cause, and short telomeres the effect. Perhaps the opposite is true: maybe people whose cells lose their telomeres also lose their jobs. More likely, an outside factor that shortens telomeres could have a limiting effect on success in the labour market. For example, such a factor might somehow contribute towards illness or pessimism.

Additionally, because the study was conducted in an isolated and genetically quite homogeneous population, the results of the study may be due to their genetic make-up as well as (or instead of) environmental effects.

In the end, we do not need a genetic study to know long-term unemployment is bad for people socially, medically and psychologically; there is plenty of evidence for that. Additionally, the bio-gerontology community (those who study the biological processes of ageing) recognises telomere attrition as one of the nine causes of the disease of ageing, including Type 2 diabetes and cardiovascular diseases.

Where this study does make a significant contribution is in recognising long-term, low-level stress as a major problem. In momentarily stressful situations, the instant fight-or-flight response stimulates us; but being under pressure for a long time with no relief wears us down. Prolonged stress is bad for memory and health, and could quite conceivably shorten telomeres – making an unemployed person significantly more unhealthy, with the effects persisting even after they get a job.

In the long run, what we really need to learn to slow or stop the ageing process is how to reduce or repair the damage done by stress.

The authors do not work for, consult to, own shares in or receive funding from any company or organisation that would benefit from this article. They also have no relevant affiliations.

This article was originally published at The Conversation.
Read the original article.

LongeCity has been doing advocacy and research for indefinite life extension since 2002. With the Methuselah Foundation and the M-Prize’s rise in prominence and public popularity over the past few years, it is sometimes easy to forget the smaller-scale research initiatives implemented by other organizations.

LongeCity seeks to conquer the involuntary blight of death through advocacy and research. They award small grants to promising small-scale research initiatives focused on longevity. The time to be doing this is now, with the increasing popularity and public awareness of Citizen Science growing. The 2020 H+ Conference’s theme was The Rise of the Citizen Scientist. Open –Source and Bottom-Up organization have been hallmarks of the H+ and TechProg communities for a while now, and the rise of citizen science parallels this trend.

Anyone can have a great idea, and there are many low-hanging fruits that can provide immense value and reward to the field of life extension without necessitating large-scale research initiatives, expensive and highly-trained staff or costly laboratory equipment. These low-hanging fruit can provide just as much benefit as large scale ones – and, indeed, even have the potential to provide more benefit per unit of funding than large-scale ones. They don’t call them low-hanging fruit for nothing – they are, after all, potentially quite fruitful.

In the past LongeCity has raised funding by matching donations made by the community to fund a research project that used lasers to ablate (i.e. remove) cellular lipofuscin. LongeCity raised $8,000 dollars by the community which was then matched by up to $16,000 by SENS Founation. A video describing the process can be found here. In the end they raised over $18,000 towards this research! Recall that one of Aubrey’s strategies of SENS is to remove cellular lipofuscin via genetically engineered bacteria. Another small-scale research project funded by LongeCity involved mitochondrial uncoupling in nematodes. To see more about this research success, see here.

LongeCity’s second successfully funded research initiative was Mitochondrial uncoupling . More information can be found here. This project studied the benefits of transplanting microglia in the aging nervous system.

LongeCity’s 3rd success was their project on Microglia Stem Cells in 2010. The full proposal can be found here, and more information on this second successful LongeCity research initiative can be found here.

LongeCity’s fourth research-funding success was on Cryonics in 2012, specifically uncovering the mechanisms of cryoprotectant toxicity.

These are real projects with real benefits that LongeCity is funding. Even if you’re not a research scientist, you can have an impact on the righteous plight to end the involuntary blight of death, by applying for a small-scale research grant from LongeCity. What have you got to lose? Really? Because it seems to me that you have just about everything to gain.

LongeCity has also contributed toward larger scale research and development initiatives in the past as well. They have sponsored projects by Alcor, SENS Foundation and Methuselah Foundation. They crowdsourced a longevity-targeted multivitamin supplement called VIMMORTAL based on bottom-up-style community suggestion and deliberation (one of the main benefits of crowdsourcing).

So? Are you interested in impacting the movement toward indefinite life extension? Then please take a look at the various types of projects listed below that LongeCity might be interested in funding.

— — — — — — — — —

The following types of projects can be supported:

• Science support: contribution to a scientific experiment that can be carried out in a short period of time with limited resources. The experiment should be distinguishable from the research that is already funded by other sources. This could be a side-experiment in an existing programme, a pilot experiment to establish feasibility, or resources for an undergrad or high-school student.

• Chapters support: organizing a local meeting with other LongeCity members or potential members. LongeCity could contribute to the room hire, the expenses of inviting a guest speaker or even the bar tab.

• Travel support: attendance at conferences, science fairs etc. where you are presenting on a topic relevant to LongeCity. Generally this will involve some promotion of the mission and/or a report on the then conference to be shared with our Members

• Grant writing:

Bring together a team of scientists and help them write a successful grant application to a public or private funding body. Depending on the project, the award will be a success premium or sometimes can cover the costs of grant preparation itself.

• Micro matching fundraiser:

If you manage to raise funds on a mission-relevant topic, LongeCity will match the funds raised. (In order to initiate one of these initiatives LongeCity usually also requires that the fundraiser spends at least 500 ‘ThankYou points’ but this requirement can be waived in specific circumstances.)

• Outreach:

Support for a specific initiative raising public awareness of the mission or of a topic relevant to our mission. This could be a local event, a specific, organized direct marketing initiative or a media feature.

• Articles:

Write a featured article for the LongeCity website on a topic of interest to our members or visitors. LongeCity is mainly looking for articles on scientific topics, but well-researched contributions on a relevant topic in policy, law, or philosophy are also welcome.

Grant Size:

‘micro grants’ — up to $180

‘small grants’ — up to $500

Grant applications exceeding $500 can be received, but will not be evaluated conclusively under the small grants scheme. Instead, LongeCity will review the application as draft and may invite a full application afterward.

Decisions as part of the small grants programme are usually pretty quick and straightforward. However please contact LongeCity with a proposal ahead of time, as they will not normally consider applications where the money has already been spent!

Proposals can be as short or elaborate as necessary, but normally should be about half a page long.

Only LongeCity Members can apply, but any Member is free to apply on behalf of someone else — thus, non-Members are welcome to find a Member to ‘sponsor’ their application.

Please email [email protected] with your proposal.

You can also use the ideas forum to prepare the proposal. For general questions, or to discuss the proposal informally, feel free to contact LongeCity at the above email.

— — — — — — — — —


A widely accepted definition of Transhumanism is: The ethical use of all kinds of technology for the betterment of the human condition.

This all encompassing summation is a good start as an elevator pitch to laypersons, were they to ask for an explanation. Practitioners and contributors to the movement, of course, know how to branch this out into specific streams: science, philosophy, politics and more.

- This article was originally published on

We are in the midst of a technological revolution, and it is cool to proclaim that one is a Transhumanist. Yet, many intelligent and focused Transhumanists are asking some all important questions: What road-map have we drawn out, and what concrete steps are we taking to bring to fruition, the goals of Transhumanism?

Transhumanism could be looked at as culminating in Technological Singularity. People comprehend the meaning of Singularity differently. One such definition: Singularity marks a moment when technology trumps the human brain, and the limitations of the mind are surpassed by artificial intelligence. Being an Author and not a scientist myself, my definition of the Singularity is colored by creative vision. I call it Dirrogate Singularity.

I see us humans, successfully and practically, harnessing the strides we’ve made in semiconductor tech and neural networks, Artificial intelligence, and digital progress in general over the past century, to create Digital Surrogates of ourselves — our Dirrogates. In doing so, humans will reach pseudo-God status and will be free to merge with these creatures they have made in their own likeness…attaining, Dirrogate Singularity.

So, how far into the future will this happen? Not very far. In fact it can commence as soon as today or as far as, in a couple of years. The conditions and timing are right for us to “trans-form” into Digital Beings; Dirrogates.

I’ll use excerpts from the story ‘Memories with Maya’ to seed ideas for a possible road-map to Dirrogate Singularity, while keeping the tenets of Transhumanism in focus on the dashboard as we steer ahead. As this text will deconstruct many parts of the novel, major spoilers are unavoidable.

Dirrogate Singularity v/s The Singularity:

The main distinction in definition I make is: I don’t believe Singularity is the moment when technology trumps the human brain. I believe Singularity is when the human mind accepts and does not discriminate between an advanced “Transhuman” (effectively, a mind upload living in a bio-mechanical body) and a “Natural” (an un-amped homo sapien)

This could be seen as a different interpretation of the commonly accepted concept of The Singularity. As one of the aims of this essay is to create a possible road-map to seed ideas for the Transhumanism movement, I choose to look at a wholly digital path to Transhumanism, bypassing human augmentation via nanotechnology, prosthetics or cyborg-ism. As we will see further down, Dirrogate Singularity could slowly evolve into the common accepted definitions of Technological Singularity.

What is a Dirrogate:

A portmanteau of Digital + Surrogate. An excerpt from the novel explains in more detail:

“Let’s run the beta of our social interaction module outside.”

Krish asked the prof to follow him to the campus ground in front of the food court. They walked out of the building and approached a shaded area with four benches. As they were about to sit, my voice came through the phone’s speaker. “I’m on your far right.”

Krish and the prof turned, scanning through the live camera view of the phone until they saw me waving. The phone’s compass updated me on their orientation. I asked them to come closer.

“You have my full attention,” the prof said. “Explain…”

“So,” Krish said, in true geek style… “Dan knows where we are, because my phone is logged in and registered into the virtual world we have created. We use a digital globe to fly to any location. We do that by using exact latitude and longitude coordinates.” Krish looked at the prof, who nodded. “So this way we can pick any location on Earth to meet at, provided of course, I’m physically present there.”

“I understand,” said the prof. “Otherwise, it would be just a regular online multi-player game world.”

“Precisely,” Krish said. “What’s unique here is a virtual person interacting with a real human in the real world. We’re now on the campus Wifi.” He circled his hand in front of his face as though pointing out to the invisible radio waves. “But it can also use a high-speed cell data network. The phone’s GPS, gyro, and accelerometer updates as we move.”

Krish explained the different sensor data to Professor Kumar. “We can use the phone as a sophisticated joystick to move our avatar in the virtual world that, for this demo, is a complete and accurate scale model of the real campus.”

The prof was paying rapt attention to everything Krish had to say. “I laser scanned the playground and the food-court. The entire campus is a low rez 3D model,” he said. “Dan can see us move around in the virtual world because my position updates. The front camera’s video stream is also mapped to my avatar’s face, so he can see my expressions.”

“Now all we do is not render the virtual buildings, but instead, keep Daniel’s avatar and replace it with the real-world view coming in through the phone’s camera,” explained Krish.

“Hmm… so you also do away with render overhead and possibly conserve battery life?” the prof asked.

“Correct. Using GPS, camera and marker-less tracking algorithms, we can update our position in the virtual world and sync Dan’s avatar with our world.”

“And we haven’t even talked about how AI can enhance this,” I said.

I walked a few steps away from them, counting as I went.

“We can either follow Dan or a few steps more and contact will be broken. This way in a social scenario, virtual people can interact with humans in the real world,” Krish said. I was nearing the personal space out of range warning.

“Wait up, Dan,” Krish called.

I stopped. He and the prof caught up.

“Here’s how we establish contact,” Krish said. He touched my avatar on the screen. I raised my hand in a high-five gesture.

“So only humans can initiate contact with these virtual people?” asked the prof.

“Humans are always in control,” I said. They laughed.

“Aap Kaise ho?” Krish said.

“Main theek hoo,” I answered a couple of seconds later, much to the surprise of the prof.

“The AI module can analyze voice and cross-reference it with a bank of ten languages.” he said. “Translation is done the moment it detects a pause in a sentence. This way multicultural communication is possible. I’m working on some features for the AI module. It will be based on computer vision libraries to study and recognize eyebrows and facial expressions. This data stream will then be accessible to the avatar’s operator to carry out advanced interaction with people in the real world–”

“So people can have digital versions of themselves and do tasks in locations where they cannot be physically present,” the prof completed Krish’s sentence.

“Cannot or choose not to be present and in several locations if needed,” I said. “There is no reason we can’t own several digital versions of ourselves doing tasks simultaneously.”

“Each one licensed with a unique digital fingerprint registered with the government or institutions offering digital surrogate facilities.” Krish said.

“We call them di-rro-gates.” I said.

One of the characters in the story also says: “Humans are creatures of habit.” and, “We live our lives following the same routine day after day. We do the things we do with one primary motivation–comfort.”

Whether this is entirely true or not, there is something to think about here… What does ‘improving the human condition’ imply? To me Comfort, is high on the list and a major motivation. If people can spawn multiple Dirrogates of themselves that can interact with real people wearing future iterations of Google Glass (for lack of a more popular word for Augmented Reality visors)… then the journey on the road-map to Dirrogate Singularity is to see a few case examples of Dirrogate interaction.

Evangelizing Transhumanism:

In writing the novel, I took several risks, story length being one. I’ve attempted to keep the philosophy subtle, almost hidden in the story, and judging by reviews on sites such as, it is plain to see that many of today’s science fiction readers are after cliff hanger style science fiction and gravitate toward or possibly expect a Dystopian future. This root craving must be addressed in lay people if we are to make Transhumanism as a movement, succeed.

I’d noticed comments made that the sex did not add much to the story. No one (yet) has delved deeper to see if there was a reason for the sex scenes and if there was an underlying message. The success of Transhumanism is going to be in large scale understanding and mass adoption of the values of the movement by laypeople. Google Glass will make a good case study in this regard. If they get it wrong, Glass will quickly share the same fate and ridicule as wearing blue-tooth headsets.

One of the first things, in my view, to improving the human condition, is experiencing pleasure… of every kind, especially carnal.

In that sense, we already are Digital Transhumans. Long distance video calls, teledildonics and recent mainstream offerings such as Durex’s “Fundawear” can bring physical, emotional and psychological comfort to humans, without the traditional need for physical proximity or human touch.


(Durex’s Fundawear – Image Courtesy

These physical stimulation and pleasure giving devices add a whole new meaning to ‘wearable computing’. Yet, behind every online Avatar, every Dirrogate, is a human operator. Now consider: What if one of these “Fundawear” sessions were recorded?

The data stream for each actuator in the garment, stored in a file – a feel-stream, unique to the person who created it? We could then replay this and experience or reminisce the signature touch of a loved one at any time…even long after they are gone; are no more. Would such as situation qualify as a partial or crude “Mind upload”?

Mind Uploading – A practical approach.

Using Augmented Reality hardware, a person can see and experience interaction with a Dirrogate, irrespective if the Dirrogate is remotely operated by a human, or driven by prerecorded subroutines under playback control of an AI. Mind uploading [at this stage of our technological evolution] does not have to be a full blown simulation of the mind.

Consider the case of a Google Car. Could it be feasible that a human operator remotely ‘drive’ the car with visual feedback from the car’s on-board environment analysis cameras? Any AI in the car could be used on an as-needed basis. Now this might not be the aim of a driver-less car, and why would you need your Dirrogate to physically drive when in essence you could tele-travel to any location?

Human Shape Shifters:

Reasons could be as simple as needing to transport physical cargo to places where home delivery is not offered. Your Dirrogate could drive the car. Once at the location [hardware depot], your Dirrogate could merge with the on-board computer of an articulated motorized shopping cart. Check out counter staff sees your Dirrogate augmented in the real world via their visor. You then steer the cart to the parking lot, load in cargo [via the cart’s articulated arm or a helper] and drive home. In such a scenario, a mind upload has swapped physical “bodies” as needed, to complete a task.

If that use made your eyes roll…here’s a real life example:

Devon Carrow, a 2nd grader has a life threatening illness that keeps him away from school. He sends his “avatar” a robot called Vigo.

In the case of a Dirrogate, if the classroom teacher wore an AR visor, she could “see” Devon’s Dirrogate sitting at his desk. A mechanical robot body would be optional. An overhead camera could project the entire Augmented classroom so all children could be aware of his presence. As AR eye-wear becomes more affordable, individual students could interact with Dirrogates. Such use of Dirrogates do fit in completely with the betterment-of-the-human-condition argument, especially if the Dirrogate operator is a human who could come into harm’s way in the real world.

While we simultaneously work on longevity and eliminating deadly diseases, both noble causes, we have to come to terms with the fact that biology has one up on us in the virus department as of today. Epidemic outbreaks such as SARS can keep schools closed. Would it not make sense to maintain the communal ethos of school attendance and classroom interaction by transhumanizing ourselves…digitally?

Does the above example qualify as Mind Uploading? Not in the traditional definition of the term. But looking at it from a different perspective, the 2nd grader has uploaded his mind to a robot.

Dirrogate Immortality via Quantum Archeology:

Below is a passage from the story. The literal significance of which, casual readers of science fiction miss out on:

“Look at her,” I said. “I don’t want her to be a just a memory. I want to keep her memory alive. That day, the Wizer was part of the reason for three deaths. Today, it’s keeping me from dying inside.”

“Help me, Krish,” I said. “Help me keep her memory alive.” He was listening. He wiped his eyes with his hands. I took the Wizer off. “Put it back on,” he said.


A closer look at the Wizer – [visor with Augmented Intelligence built in.]

The preceding excerpt from the story talks about resurrecting her; digital-cryonics.

So, how would Quantum Archeology techniques be applied to resurrect a dead person? Every day we spend hours uploading our stream-of-consciousness to the “cloud”. Photos, videos, Instagrams, Facebook status updates, tweets. All of this is data that can be and is being mined by Deep Learning systems. There’s no prize for guessing who the biggest investor and investigator of Deep Learning is.

Quantum Archeology gets a helping hand with all the digital breadcrumbs we’re leaving around us in this century. The question is: Is that enough information for us to Create a Mind?

Mind Uploading – Libraries and Subroutines:

A more relevant question to ask is, should we attempt to build a mind from the ground up, or start by collecting subroutines and libraries unique to a particular person? Earlier on in the article, it was suggested that by recording a ‘Fundawear’ session, we could re-experience someone’s signature intimate touch. Using Deep Learning, can personality libraries be built?

A related question to answer is: Wouldn’t it make everything ‘artificial’ and be a degraded version of the original? To attempt to answer such a question, let’s look around us today. Aren’t we already degrading our sense of hearing for instance, when we listen to hour after hour of MP3 music sampled at 128kHz or less? How about every time we’ve come to rely on Google’s “did you mean” or Microsoft’s red squiggly line to correct even our simple spellings?

Now, it gets interesting… since we have mind upload “libraries”, we are at liberty to borrow subroutines from more accomplished humans, to augment our own intelligence.

Will the near future allow us to choose a Dirrogate partner with the creative thinking of one person’s personality upload, the intimate skill-set of another and… you get the picture. Most people lead routine 9 to 5 lives. That does not mean that they are not missed by loved ones after they have completed their biological life-cycle. Resurrecting or simulating such minds is much easier than say re-animating Einstein.

In the story, Krish, on digitally resurrecting his father recounts:

“After I saw Maya, I had to,” he said. “I’ve used her same frame structure for the newspaper reading. Last night I went through old photos, his things, his books,” his voice was low. “I’m feeding them into the frame. This was his life for the past two years before the cancer claimed him. Every evening he would sit in this chair in the old house and read his paper.”

I listened in silence as he spoke. Tactile receptors weren’t needed to experience pain. Tone of voice transported those spores just as easily.

“It was easy to create a frame for him, Dan,” he said. “In the time that the cancer was eating away at him, the day’s routine became more predictable. At first he would still go to work, then come home and spend time with us. Then he couldn’t go anymore and he was at home all day. I knew his routine so well it took me 15 minutes to feed it in. There was no need for any random branches.”

I turned to look at him. The Wizer hid his eyes well. “Krish,” I said. “You know what the best part about having him back is? It does not have to be the way it was. You can re-define his routine. Ask your mom what made your dad happy and feed that in. Build on old memories, build new ones and feed those in. You’re the AI designer… bend the rules.”

“I dare not show her anything like this,” he said. “She would never understand. There’s something not right about resurrecting the dead. There’s a reason why people say rest in peace.”

Who is the real Transhuman?

Is it a person who has augmented their physical self or augmented one of their five primary senses? Or is it a human who has successfully re-wired their brain and their mind to accept another augmented human and the tenets of Transhumanism?

“He said perception is in the eye of the beholder… or something to that effect.”

“Maybe he said realism?” I offered.

“Yeah. Maybe. Turns out he is a believer and subscribes to the concept of transhumanism,” Krish said, adjusting the Wizer on the bridge of his nose. “He believes the catalyst for widespread acceptance of transhumanism has to be based on visual fidelity or the entire construct will be stymied by the human brain and mind.”

“Hmm… the uncanny valley effect? It has to be love at first sight, if we are to accept an augmented person huh.”

“Didn’t know you followed the movement,” he said.

“Look around us. Am I really here in person?”

“Point taken,” he said.

While taking the noble cause of Transhumanism forward, we have to address one truism that was put forward in the movie, The Terminator: It’s in your nature to destroy yourselves.”

When we eventually reach a full mind-upload stage and have the ability to swap or borrow libraries from other ‘minds’, will personality traits of greed still be floating around as rogue libraries? Perhaps the common man is right – A Dystopian future is on the cards, that’s why science fiction writers gravitate toward dystopia worlds.

Could this change as we progress from transhuman to post-human?

In building a road-map for Transhumanism, we need to present and evangelize more to the common man in language and scenarios they can identify with. That is one of the main reasons Memories with Maya features settings and language that at times, borders on juvenile fiction. Concepts such as life extension, reversal of aging and immortality can be made to resound better with laypeople when presented in the right context. There is a reason that Vampire stories are on the nation’s best seller lists.

People are intrigued and interested in immortality.

Memories with Maya – The Dirrogate on Amazon:

For more on the science used in the book, visit: Http://

Medical science has changed humanity. It changed what it means to be human, what it means to live a human life. So many of us reading this (and at least one person writing it) owe their lives to medical advances, without which we would have died.

Live expectancy is now well over double what it was for the Medieval Briton, and knocking hard on triple’s door.

What for the future? Extreme life extension is no more inherently ridiculous than human flight or the ability to speak to a person on the other side of the world. Science isn’t magic – and ageing has proven to be a very knotty problem – but science has overcome knotty problems before.

A genuine way to eliminate or severely curtail the influence of ageing on the human body is not in any sense inherently ridiculous. It is, in practice, extremely difficult, but difficult has a tendency to fall before the march of progress. So let us consider what implications a true and seismic advance in this area would have on the nature of human life.


One absolutely critical issue that would surround a breakthrough in this area is the cost. Not so much the cost of research, but the cost of application. Once discovered, is it expensive to do this, or is it cheap? Do you just have to do it once? Is it a cure, or a treatment?

If it can be produced cheaply, and if you only need to do it once, then you could foresee a future where humanity itself moves beyond the ageing process.

The first and most obvious problem that would arise from this is overpopulation. A woman has about 30–35 years of life where she is fertile, and can have children. What if that were extended to 70–100 years? 200 years?

Birth control would take on a vastly more important role than it does today. But then, we’re not just dropping this new discovery into a utopian, liberal future. We’re dropping it into the real world, and in the real world there are numerous places where birth control is culturally condemned. I was born in Ireland, a Catholic nation, where families of 10 siblings or more are not in any sense uncommon.

What of Catholic nations – including some staunchly conservative, and extremely large Catholic societies in Latin America – where birth control is seen as a sin?

Of course, the conservatism of these nations might (might) solve this problem before it arises – the idea of a semi-permanent extension of life might be credibly seen as a deeper and more blasphemous defiance of God than wearing a condom.

But here in the West, the idea that we are allowed to choose how many children we have is a liberty so fundamental that many would baulk to question it.

We may have to.

quizzical baby

There is another issue. What about the environmental impact? We’re already having a massive impact on the environment, and it’s not looking pretty. What if there were 10 times more of us? 100 times more? What about the energy consumption needs, in a world running out of petrol? The food needs? The living space? The household waste?

There are already vast flotillas of plastic waste the size of small nations that float across the surface of the Pacific. Carbon dioxide levels in the atmosphere have just topped 400 parts per million. We are pushing hard at the envelope of what the world of capable of sustaining, and a massive boost in population would only add to that ever-increasing pressure.

Of course, science might well sort out the answer to those things – but will it sort it out in time? The urgency of environmental science, and cultural change, suddenly takes on a whole new level of importance in the light of a seismic advance in addressing the problem of human ageing.

These are problems that would arise if the advance produced a cheap treatment that could (and would) be consumed by very large numbers of people.

But what if it wasn’t a cure? What if it wasn’t cheap? What if it was a treatment, and a very expensive one?

All of a sudden, we’re looking at a very different set of problems, and the biggest of all centres around something Charlie Chaplin said in the speech he gave at the end of his film, The Great Dictator. It is a speech from the heart, and a speech for the ages, given on the eve of mankind’s greatest cataclysm to date, World War 2.

In fact, you’d be doing yourself a favour if you watched the whole thing, it is an astounding speech.

chaplin great dictator

The quote is this:

“To those who can hear me, I say — do not despair.

The misery that is now upon us is but the passing of greed, the bitterness of men who fear the way of human progress. The hate of men will pass, and dictators die, and the power they took from the people will return to the people. And so long as men die, liberty will never perish.”

And so long as men die, liberty will never perish.

What if Stalin were immortal? And not just immortal, but immortally young?

Immortally vigourous, able to amplify the power of his cult of personality with his literal immortality.

This to me seems a threat of a very different kind, but of no less importance, than the dangers of overpopulation. That so long as men die, liberty will never perish. But what if men no longer die?

And of course, you could very easily say that those of us lucky enough to live in reasonably well-functioning democracies wouldn’t have to worry too much about this. It doesn’t matter if you live to be 1000, you’re still not getting more than 8 years of them in the White House.

But there is something in the West that would be radically changed in nature. Commercial empires.

What if Rupert Murdoch were immortal?

It doesn’t matter how expensive that treatment for ageing is. If it exists, he’d be able to afford it, and if he were able to buy it, he’d almost certainly do so.

If Fox News was run by an immortal business magnate, with several lifetimes worth of business experience and skill to know how to hold it all together, keep it going, keep it growing? What then?


Not perhaps the sunny utopia of a playground of immortals that we might hope for.

This is a different kind of issue. It’s not an external issue – the external impact of population on the environment, or the external need of a growing population to be fed. These problems might well sink us, but science has shown itself extremely adept at finding solutions to external problems.

What this is, is an internal problem. A problem of humanity. More specifically, the fact that extreme longevity would allow tyranny to achieve a level of entrenchment that it has so far never been capable of.

But then a law might be passed. Something similar to the USA’s 8 year term limit on Presidents. You can’t be a CEO for longer than 30 years, or 40 years, or 50. Something like that might help, might even become urgently necessary over time. Forced retirement for the eternally young.

Not an unproblematic idea, I’m sure you’ll agree. Quite the culture shock for Western societies loathe to accept government intervention in private affairs.

But it is a new category of problem. A classic problem of humanity, amplified by immortality. The centralisation of control, power and influence in a world where the people it centres upon cannot naturally die.

This, I would say, is the most obvious knotty problem that would arise, for humanity, in the event of an expensive, but effective, treatment for ageing.

But then, let’s just take a quick look back at the other side of the coin. Is there a problem inherent in humanity that would be amplified were ageing to be overcome, cheaply, worldwide?

Let me ask you a question.

Do people, generally speaking, become more open to new things, or less open to new things, as they age?

Do older people – just in general terms – embrace change or embrace stasis?

Well, it’s very obvious that some older people do remain young at heart. They remain passionate, humble in their beliefs, they are open to new things, and even embrace them. Some throw the influence and resources they have accrued throughout their lifetimes into this, and are instrumental to the march of progress.

More than this, they add a lifetime of skill, experience and finesse to their passion, a melding of realism and hope that is one of the most precious and potent cocktails that humanity is capable of mixing.

But we’re not talking about the few. We’re talking about the many.

Is it fair to say that most older people take this attitude to change? Or is it fairer to say that older people who retain that passion and spark, who not only have retained it, but have spent a lifetime fuelling it into a great blaze of ability and success – is it fair to say that these people are a minority?

I would say yes. They are incredibly precious, but part of that preciousness is the fact that they are not common.

Perhaps one day we will make our bodies forever young. But what of our spirit? What of our creativity?

I’m not talking about age-related illnesses like Parkinson’s, or Alzheimer’s disease. I’m talking about the creativity, passion and fire of youth.

The temptation of the ‘comfort zone’ for all human beings is a palpable one, and one that every person who lives well, who breaks the mold, who changes the future, must personally overcome.

Do the majority of people overcome it? I would argue no. And more than this, I would argue that living inside a static understanding of the world – even working to protect that understanding in the face of naked and extreme challenges from reality itself – is now, and has historically been, through all human history, the norm.

Those who break the mold, brave the approbation of the crowd, and look to the future with wonder and hope, have always been a minority.

mind closed till further notice

Now add in the factor of time. The retreat into the comforting, the static and the known has a very powerful pull on human beings. It is also not a binary process, but an analogue process – it’s not just a case of you do or you don’t. There are degrees of retreat, extremes of intellectual conservatism, just as there are extremes of intellectual curiosity, and progress.

But which extremes are the more common? This matters, because if all people could live to 200 years old or more, what would that mean for a demographic shift in cultural desire away from change and toward stasis?

A worrying thought. And it might seem that in the light of all this, we should not seek to open the Pandora’s box of eternal life, but should instead stand against such progress, because of the dangers it holds.

But, frankly, this is not an option.

The question is not whether or not human beings should seek to conquer death.

The question is whether or not conquering death is possible.

If it is possible, it will be done. If it is not, it will not be.

But the obvious problem of longevity – massive population expansion – is something that is, at least in principle, amenable to other solutions arising from science as it now practiced. Cultural change is often agonising, but it does happen, and scientific progress may indeed solve the issues of food supply and environmental impact. Perhaps not, but perhaps.

At the very least, these sciences take on a massively greater importance to the cohesion of the human future than they already have, and they are already very important indeed.

But there is another, deeper problem of a very different kind. The issue of the human spirit. If, over time, people (on average) become more calcified in their thinking, more conservative, less likely to take risks, or admit to new possibilities that endanger their understanding, then longevity, distributed across the world, can only lead to a culture where stasis is far more valued than change.

Pandora’s box is already open, and its name is science. Whether it is now, or a hundred years from now, if it is possible for human beings to be rendered immortal through science, someone is going to crack it.

We cannot flinch the future. It would be churlish and naive to assume that such a seemingly impossible vision will forever remain impossible. Not after the last century we just had, where technological change ushered in a new era, a new kind of era, where the impossibilities of the past fell like wheat beneath a scythe.

Scientific progress amplifies the horizon of possible scientific progress. And we stand now at a time when what it means to be a human – something which already undergone enormous change – may change further still, and in ways more profound than any of us can imagine.

If it can be done, it will be done. And so the only sane approach is to look with clarity at what we can see of what that might mean.

The external problems are known problems, and we may yet overcome them. Maybe. If there’s a lot of work, and a lot of people take a lot of issues a lot more seriously than they are already doing.


But there is a different kind of issue. An issue extending from human nature itself. Can we overcome, as a people, as a species, our fear, and the things that send us scurrying back from curiosity and hope into the comforting arms of wilful ignorance, and static belief?

This, in my opinion, is the deepest problem of longevity. Who wants to live forever in a world where young bodies are filled with withered souls, beaten and embittered with the frustrations of age, but empowered to set the world in stone to justify them?

But perhaps it was always going to come to this. That at some point technological advancement would bring us to a kind of reckoning. A reckoning between the forces of human fear, and the value of human courage.

To solve the external problems of an eternal humanity, science must do what science has done so well for so long – to delve into the external, to open up new possibilities to feed the world, and balance human presence with the needs of the Earth.

But to solve the internal problems of an eternal humanity, science needs to go somewhere else. The stunning advances in the understanding of the external world must begin to be matched with new ways of charting the deeps of human nature. The path of courage, of open-mindedness, of humility, and a willingness to embrace change and leave behind the comforting arms of old static belief systems – this is not a path that many choose.

But many more must choose it in a world of immortal people, to counterbalance the conservatism of those who fail the test, and retreat, and live forever.

Einstein lived to a ripe old age, and never lost his wonder. Never lost his humility, or his courage to brave the approbation and ridicule of his peers in that task he set himself. To chart the deep simplicities of the real, and know the mind of God. The failure of the human spirit is not written in the stars, and never will be.

einstein laughing

We are none of us doomed to fail in matters of courage, curiosity, wonder or hope. But we are none of us guaranteed to succeed.

And as long as courage, hope and the ability to break new ground remain vague, hidden properties that we squeamishly refuse to interrogate, each new generation will have to start from scratch, and make their own choices.

And in a world of eternal humans, if any individual generation fails, the world will be counting that price for a very long time.

It is a common fear that if we begin to make serious headway into issues normally the domain of the spiritual, we will destroy the mystique of them, and therefore their preciousness.

Similar criticisms were, and sometimes still are, laid at the feet of Darwin’s work, and Galileo’s. But the fact is that an astronomer does not look to the sky with less wonder because of their deeper understanding, but more wonder.

Reality is both stunningly elegant, and infinitely beautiful, and in these things it is massively more amazing than the little tales of mystery humans have used to make sense of it since we came down from the trees.

In the face of a new future, where the consequences of human courage and human failure are amplified, the scientific conquest of death must be fused with another line of inquiry. The scientific pioneering of the fundamental dynamics of courage in living, and humility to the truth, over what we want to believe.

It will never be a common path, and no matter how clear it is made, or how wide it is opened, there will always be many who will never walk it.

But the wider it can be made, the clearer it can be made, the more credible it can be made as an option.

And we will need that option. We need it now.

And our need will only grow greater with time.

It is often said that empiricism is one of the most useful concepts in epistemology. Empiricism emphasises the role of experience acquired through one’s own senses and perceptions, and is contrary to, say, idealism where concepts are not derived from experience, but based on ideals.

In the case of radical life extension, there is a tendency to an ‘idealistic trance’ where people blindly expect practical biotechnological developments to be available and applied to the public at large within a few years. More importantly, idealists expect these treatments or therapies to actually be effective and to have a direct and measurable effect upon radical life extension. Here, by ‘radical life extension’ I refer not to healthy longevity (a healthy life until the age of 100–120 years) but to an indefinite lifespan where the rate of age-related mortality is trivial.

Let me mention two empirical examples based on experience and facts:

1. When a technological development depends on technology alone, its progress is often dramatic and exponential.

2. When a technological development also depends on biology, its progress is embarrassingly negligible.

Developments based solely on mechanical, digital or electronic concepts are proliferating freely and vigorously. Just 20 years ago, almost nobody had a mobile telephone or knew about the internet. Now we have instant global communication accessible by any member of the general public.

Contrast this with the advancement of biotechnology with regards to, say, the treatment of the common cold. There has not been a significantly effective treatment for the public at large for, I will not say a million, but certainly for several thousand years. The accepted current medical treatment for the common cold is with bed rest, fluids, and antipyretics which is the same as that suggested by Hippocrates. Formal guidelines for the modern treatment of cardiac arrest include chest compressions and mouth- to- mouth resuscitation (essentially the same as the technique used by the prophet Elisha in the Old Testament) as well as intra-cardiac (!) atropine, lignocaine and other drugs used by physicians during the 1930’s. In my medical museum in Cyprus ( I have examples of Medieval treatments for urinary retention (it was via a metal urinary catheter then, whereas now the catheter is plastic), treatment of asthma (with belladonna then, ipratropium now – a direct derivative), and treatment of pain (with opium then, with opium-like derivatives now).

About a hundred years ago, my grandfather ( wrote a book on hygiene, longevity and healthy life for the public, which included advice such as fresh air, exercise, consumption of fruit and vegetables, avoidance of excessive alcohol or cigarette smoke. These are of course preventative treatments advised by modern anti-ageing practitioners, hardly any progress in a century. In fact, these are the only proven treatments. Even the modern notion of ‘antioxidants’ can be encountered as standard health advice in medical books from the 1800’s. With the trivial exception of a handful of other examples, there has hardly been any progress in healthy longevity at all that can be applied to the common man in the street. Resveratrol? Was a standard health advice in ancient Greek medicine (red wine). Carnosine? Discovered and used 100 years ago. Cycloastragenol? Used in Chinese medicine 1000 years ago.

My question is: how do we expect to influence the process of ageing when we cannot even develop bio-technological cures for simple and common diseases? Are we really serious when we talk about biotechnological treatments that can lead to radical life extension, being developed within the next few years? And if we are really serious, is this belief based on empiricism or idealism? The manipulation of human biology has been particularly tricky, with no significant progress of effective breakthroughs developed during the past several decades. Here I, of course, acknowledge the value of some modern drugs and isolated bio-technological achievements, but my point is that these developments are based on relatively minor refinements of existing therapies, and not on new breakthroughs that can modify the human body in any positive or practical degree. Importantly, even if some isolated examples of effective biotechnology do exist, these are not yet suitable for use by the general public at large.

If we were to compare the progress of general technology with that of life extension biotechnology, we could see that:

A. The progress of technology over the past 100 years has been logarithmic to exponential, whereas that of life extension biotechnology has been virtually static.

B. The progress of technology over the past 20 years has been exponential, whereas that of life extension biotechnology has barely been logarithmic.

It is one thing to talk about future biotechnology developments as a discussion point, and to post these in blogs, for general curiosity. But it is a different thing altogether if we actually want to devise and deliver an effective, practical therapy that truly affords significant life extension.

A different approach is needed, one that does not depend exclusively on biotechnology. It would be naïve to say that I am arguing for the total abandonment of life extension biotechnology, but it is equally naïve to believe that this biotechnology is likely to be effective on its own. A possible way forward could be the attempt to modify human biology not via biotechnology alone, but also by making use of natural, already existing evolutionary mechanisms. One such example could be the use of ‘information-that-requires-action’ in order to force a reallocation of resources from germ-line to somatic cells. This is an approach we currently aiming to describe in detail. My final remark with regards to achieving indefinite lifespan is this: we must engage with technology without depending on biotechnology.

For some general background information on how to engage with technology see:

lifebFreedom fironically found in flesh, not knowing whe’er I’m foul or fowl… tickly bound neath trickly form twisting and more unfresh as dawn upon dawn dies in menstrual skyfire like blood made light — a mocking microcosm of my own transubstantiation from rotting viscera to lightstorm infinity?

Just what sick joke is this? To wake and ache and dream and be and become! – and then to die..? To culminate the very universe itself!.. and then to simply die?! For what I ask you! What! Death… what audacious greed! What reckless squander and heedless extravagance!

Guttural red fringed black a bulbous muck death bastphelgmy! We cannot comprehend the sheer stature of death and so hurriedly cover the unknown with a word to hold it in hand and at a distance, to doubt no doubt.

O pallid heavens! O incessant sun undaunted by my barrenaked finitude! O fetid sanctity wet and redragged as the sickly bloom of jagged flesh! O putrid night sky serene despite my spat fury; as I ebb and ember a’roil withinside my sadness unbelieving and hysteric animal heat that vile sun and auster night jaunt their jeer and mock the rude squall of my panicstrewn death nonetheless.

We must not believe them when they tell us with sad care that we will one day die.

We must not believe them when they tell us that we will escape death by any means but our own daring.

We must bleed our eschaton passion upforth and afroth upon that void hated with awefull grandeur for its monster honesty. We must take self in hand and be/hold the possible futures still fetal inside. We must rage our righteous revolt with pride bright as that unsickened sun, not afraid to boast that we fear death but instead eager to thrust our fervent urgency upon the others still bound to opiate incredulity.

We are Man, and we shall NOT go quietly into that dog night!

This soliloquy was originally published on

1. Thou shalt first guard the Earth and preserve humanity.

Impact deflection and survival colonies hold the moral high ground above all other calls on public funds.

2. Thou shalt go into space with heavy lift rockets with hydrogen upper stages and not go extinct.

The human race can only go in one of two directions; space or extinction- right now we are an endangered species.

3. Thou shalt use the power of the atom to live on other worlds.

Nuclear energy is to the space age as steam was to the industrial revolution; chemical propulsion is useless for interplanetary travel and there is no solar energy in the outer solar system.

4. Thou shalt use nuclear weapons to travel through space.

Physical matter can barely contain chemical reactions; the only way to effectively harness nuclear energy to propel spaceships is to avoid containment problems completely- with bombs.

5. Thou shalt gather ice on the Moon as a shield and travel outbound.

The Moon has water for the minimum 14 foot thick radiation shield and is a safe place to light off a bomb propulsion system; it is the starting gate.

6. Thou shalt spin thy spaceships and rings and hollow spheres to create gravity and thrive.

Humankind requires Earth gravity and radiation to travel for years through space; anything less is a guarantee of failure.

7. Thou shalt harvest the Sun on the Moon and use the energy to power the Earth and propel spaceships with mighty beams.

8. Thou shalt freeze without damage the old and sick and revive them when a cure is found; only an indefinite lifespan will allow humankind to combine and survive. Only with this reprieve can we sleep and reach the stars.

9. Thou shalt build solar power stations in space hundreds of miles in diameter and with this power manufacture small black holes for starship engines.

10. Thou shalt build artificial intellects and with these beings escape the death of the universe and resurrect all who have died, joining all minds on a new plane.

The Brain Games Begin
Europe’s billion-Euro science-neuro Human Brain Project, mentioned here amongst machine morality last week, is basically already funded and well underway. Now the colonies over in the new world are getting hip, and they too have in the works a project to map/simulate/make their very own copy of the universe’s greatest known computational artifact: the gelatinous wad of convoluted electrical pudding in your skull.

The (speculated but not yet public) Brain Activity Map of America
About 300 different news sources are reporting that a Brain Activity Map project is outlined in the current administration’s to-be-presented budget, and will be detailed sometime in March. Hoards of journalists are calling it “Obama’s Brain Project,” which is stoopid, and probably only because some guy at the New Yorker did and they all decided that’s what they had to do, too. Or somesuch lameness. Or laziness? Deference? SEO?

For reasons both economic and nationalistic, America could definitely use an inspirational, large-scale scientific project right about now. Because seriously, aside from going full-Pavlov over the next iPhone, what do we really have to look forward to these days? Now, if some technotards or bible pounders monkeywrench the deal, the U.S. is going to continue that slide toward scientific… lesserness. So, hippies, religious nuts, and all you little sociopathic babies in politics: zip it. Perhaps, however, we should gently poke and prod the hard of thinking toward a marginally heightened Europhobia — that way they’ll support the project. And it’s worth it. Just, you know, for science.

Going Big. Not Huge, But Big. But Could be Massive.
Both the Euro and American flavors are no Manhattan Project-scale undertaking, in the sense of urgency and motivational factors, but more like the Human Genome Project. Still, with clear directives and similar funding levels (€1 billion Euros & $1–3 billion US bucks, respectively), they’re quite ambitious and potentially far more world changing than a big bomb. Like, seriously, man. Because brains build bombs. But hopefully an artificial brain would not. Spaceships would be nice, though.

Practically, these projects are expected to expand our understanding of the actual physical loci of human behavioral patterns, get to the bottom of various brain pathologies, stimulate the creation of more advanced AI/non-biological intelligence — and, of course, the big enchilada: help us understand more about our own species’ consciousness.

On Consciousness: My Simulated Brain has an Attitude?
Yes, of course it’s wild speculation to guess at the feelings and worries and conundrums of a simulated brain — but dude, what if, what if one or both of these brain simulation map thingys is done well enough that it shows signs of spontaneous, autonomous reaction? What if it tries to like, you know, do something awesome like self-reorganize, or evolve or something?

Maybe it’s too early to talk personality, but you kinda have to wonder… would the Euro-Brain be smug, never stop claiming superior education yet voraciously consume American culture, and perhaps cultivate a mild racism? Would the ‘Merica-Brain have a nation-scale authority complex, unjustifiable confidence & optimism, still believe in childish romantic love, and overuse the words “dude” and “awesome?”

We shall see. We shall see.

Oh yeah, have to ask:
Anyone going to follow Ray Kurzweil’s recipe?

Project info:

Kinda Pretty Much Related:

This piece originally appeared at on February 28, 2013.

The Golden Rule is Not for Toasters

Simplistically nutshelled, talking about machine morality is picking apart whether or not we’ll someday have to be nice to machines or demand that they be nice to us.

Well, it’s always a good time to address human & machine morality vis-à-vis both the engineering and philosophical issues intrinsic to the qualification and validation of non-biological intelligence and/or consciousness that, if manifested, would wholly justify consideration thereof.

Uhh… yep!

But, whether at run-on sentence dorkville or any other tech forum, right from the jump one should know that a single voice rapping about machine morality is bound to get hung up in and blinded by its own perspective, e.g., splitting hairs to decide who or what deserves moral treatment (if a definition of that can even be nailed down), or perhaps yet another justification for the standard intellectual cul de sac:
“Why bother, it’s never going to happen.“
That’s tired and lame.

One voice, one study, or one robot fetishist with a digital bullhorn — one ain’t enough. So, presented and recommended here is a broad-based overview, a selection of the past year’s standout pieces on machine morality.The first, only a few days old, is actually an announcement of intent that could pave the way to forcing the actual question.
Let’s then have perspective:

Building a Brain — Being Humane — Feeling our Pain — Dude from the NYT
February 3, 2013 — Human Brain Project: Simulate One
Serious Euro-Science to simulate a human brain. Will it behave? Will we?

January 28, 2013 — NPR: No Mercy for Robots
A study of reciprocity and punitive reaction to non-human actors. Bad robot.

April 25, 2012 — IEEE Spectrum: Attributing Moral Accountability to Robots
On the human expectation of machine morality. They should be nice to me.

December 25, 2011 — NYT: The Future of Moral Machines
Engineering (at least functional) machine morality. Broad strokes NYT-style.

Expectations More Human than Human?
Now, of course you’re going to check out those pieces you just skimmed over, after you finish trudging through this anti-brevity technosnark©®™ hybrid, of course. When you do — you might notice the troubling rub of expectation dichotomy. Simply put, these studies and reports point to a potential showdown between how we treat our machines, how we might expect others to treat them, and how we might one day expect to be treated by them. For now morality is irrelevant, it is of no consideration nor consequence in our thoughts or intentions toward machines. But, at the same time we hold dear the expectation of reasonable treatment, if not moral, by any intelligent agent — even an only vaguely human robot.

Well what if, for example: 1. AI matures, and 2. machines really start to look like us?
(see: Leaping Across Mori’s Uncanny Valley: Androids Probably Won’t Creep Us Out)

Even now should someone attempt to smash your smartphone or laptop (or just touch it), you of course protect the machine. Extending beyond concerns over the mere destruction of property or loss of labor, could one morally abide harm done to one’s marginally convincing humanlike companion? Even if fully accepting of its artificiality, where would one draw the line between economic and emotional damage? Or, potentially, could the machine itself abide harm done to it? Even if imbued with a perfectly coded algorithmic moral code mandating “do no harm,” could a machine calculate its passive non-response to intentional damage as an immoral act against itself, and then react?

Yeah, these hypotheticals can go on forever, but it’s clear that blithely ignoring machine morality or overzealously attempting to engineer it might result in… immorality.

Probably Only a Temporary Non-Issue. Or Maybe. Maybe Not.
There’s an argument that actually needing to practically implement or codify machine morality is so remote that debate is, now and forever, only that — and oh wow, that opinion is superbly dumb. This author has addressed this staggeringly arrogant species-level macro-narcissism before (and it was awesome). See, outright dismissal isn’t a dumb argument because a self-aware machine or something close enough for us to regard as such is without doubt going to happen, it’s dumb because 1. absolutism is fascist, and 2. to the best of our knowledge, excluding the magic touch of Jesus & friends or aliens spiking our genetic punch or whatever, conscious and/or self-aware intelligence (which would require moral consideration) appears to be an emergent trait of massively powerful computation. And we’re getting really good at making machines do that.

Whatever the challenge, humans rarely avoid stabbing toward the supposedly impossible — and a lot of the time, we do land on the moon. The above mentioned Euro-project says it’ll need 10 years to crank out a human brain simulation. Okay, respectable. But, a working draft of the human genome, an initially 15-year international project, was completed 5 years ahead of schedule due largely to advances in brute force computational capability (in the not so digital 1990s). All that computery stuff like, you know, gets better a lot faster these days. Just sayin.

So, you know, might be a good idea to keep hashing out ideas on machine morality.
Because who knows what we might end up with…

Oh sure, I understand, turn me off, erase me — time for a better model, I totally get it.
- or -
Hey, meatsack, don’t touch me or I’ll reformat your squishy face!

Choose your own adventure!


This piece originally appeared at on February 7, 2013.