Toggle light / dark theme

Earthlings, meet the EmDrive, the rocket of the future.

Allegedly, Eagleworks Labs at NASA’s Johnson Space Center has defied a Newtonian law of physics and created a futuristic warp drive. If it’s real, it could be the most exciting breakthrough in space-travel technology to date: an engine that gets from point A to point B without using any fuel — and does it crazy fast.

Despite months of skepticism, our nation’s aerospace agency wants you to believe its latest findings are legit. Recent studies purportedly prove the EmDrive’s authenticity. Even NASA researcher Paul March hopped on a (non-NASA-affiliated) spaceflight forum to chat about the agency’s findings.

Read more

The U.S. government is getting more serious about dealing with the dangers posed by powerful sun storms.

On Thursday (Oct. 29), the White House released two documents that together lay out the nation’s official plan for mitigating the negative impacts of solar flares and other types of “space weather,” which have the potential to wreak havoc on power grids and other key infrastructure here on Earth.

The new “National Space Weather Strategy” outlines the basic framework the federal government will pursue to better understand, predict and recover from space-weather events, while the “National Space Weather Action Plan” details specific activities intended to help achieve this broad goal. [The Sun’s Wrath: Worst Solar Storms in History].

Read more

Emerging technologies are shaking up how we grow food, distribute it, and even what we’re eating. We are seemingly on the cusp of a food revolution and undoubtedly, technologies including artificial intelligence will play a huge role in helping people grow healthier, more resilient food faster and with less energy than ever before.

Rob Nail, Singularity University’s CEO and Associate Founder, provides a few examples of how robotics, automation, and drones are transforming agriculture in this short video:

Read more

The novel its a bit older, but it‘s an incredible vision!


When Star Trek’s Scotty warns the Captain that the engines can’t “take it”, he might just be best off switching fuel — a new book claims that humanity could reach the stars using vast spacecraft harnessing the energy of black holes with the power to “eat planets”.

Inside would be an artificial black hole — created by spheres of generators firing “gravitons”- and, claims author Dr Roger Hoskins, Fellow of the Royal Astronomical Society, would curve space-time — and would be “faster than anti matter drives.”

Captain Kirk would be jealous of the speeds offered by a black hole powered craft — which displaces or curves space time, like a warp drive, thus appearing to go faster than light.

Read more

Substantially smaller and longer-lasting batteries for everything from portable electronic devices to electric cars could be come a reality thanks to an innovative technology developed by University of Waterloo researchers.

Zhongwei Chen, a chemical engineering professor at Waterloo, and a team of graduate students have created a low-cost battery using silicon that boosts the performance and life of lithium-ion batteries. Their findings are published in the latest issue of Nature Communications.

Waterloo’s silicon battery technology promises a 40 to 60 per cent increase in energy density, which is important for consumers with smartphones, smart homes and smart wearables.

Read more

Site — http://goo.gl/oORnr
IMDB — http://goo.gl/0PQvB
Instagram — http://goo.gl/JiyAC
Twitter — http://goo.gl/Ne8ZE
LinkedIn — http://goo.gl/myBN0
Vimeo — http://goo.gl/c57k6
Genre: docudrama
Type: documentary
Year: 2011
Director: Misha Kostrov
Creative director: Eugene Sannikov
Producer: Victor Mirsky, Sergey Sozanovsky
Creative producer: Oksana Maidanskaya
Director of photography: Vladimir Kratinov
Scriptwriter: Nataliya Doilnitsyna
Аwards: Platinum Remi Award, WorldFest Houston 2013

The film tacks together two tales: a historical account of Tesla’s eventful life and his pioneering research into physics and bold experiments with electricity.

Suffering from a fatal malady as a child the future great physicist promised his parents that he would recover under the sole condition…if they allowed him to become an engineer. And he kept his promise. Never ending yearning for knowledge, research practice, creative endeavor, discoveries that have unfixed all established notions — that’s what was the characteristic of the great physicist. Nikola Tesla would always remain a scientist whose life was a sort of mystification rather than pure reality.

Read more

A new approach developed by researchers at the University of Waterloo could hold the key to greatly improving the performance of commercial lithium-ion batteries. The scientists have developed a new type of silicon anode that would be used in place of a conventional graphite anode, which they claim will lead to smaller, lighter and longer-lasting batteries for everything from personal devices to electric vehicles.

Graphite has served the lithium-ion battery world as material for negative electrodes well so far, but also presents something of a roadblock for improved capacity. This is due to the relatively small amount of energy it can store, which comes in at around 370 mAh/g (milliamp hours per gram). Silicon has become an increasingly popular substitute for battery researchers looking to up the ante, with a specific capacity of 4,200 mAh/g. However, it isn’t without its limitations either.

As silicon interacts with lithium inside the cell during each charge cycle, it expands and contracts by as much as as 300 percent. This immense swelling brings about cracks that diminish the battery’s performance over time, leading to short circuits and ultimately cell failure. Other recent attempts to overcome this problem have turned up battery designs that use sponge-like silicon anodes developed at the nanoscale, silicon nanowires measuring only a few microns long and ones that bring graphene and carbon nanotubes into the mix.

Read more

A Hall thruster is powering many of the satellites moving around Earth right now. It needs 100 million (yes, you read that right, 100 million) times less fuel than chemical thrusters. But it was never remotely sturdy enough to get anything to Mars—until now.

Typical chemical thrusters are pretty simple. Fuel combusts, gases shoot one way, and a rocket shoots the other way.

Ion thrusters are a little different. They contain charged electrodes, an anode and a cathode, and allow positively charged ions to shoot from the anode to the cathode. Thanks to momentum, the ions will “overshoot” the cathode. Under regular circumstances they’d be sucked back, but once they’ve cleared the cathode, they’re hit by a beam of electrons, neutralizing them and allowing them to go on their way without interference from the charged cathode. So the neutralized atoms shoot one way, and the rocket shoots another.

Read more

Samsung’s latest battery prototypes could lead not only to more powerful wearables, but also to unusual ones. The first model called Band is meant to be attached to smartwatch straps, as its name implies, to add as much as 50 percent of the device’s original battery life. Stripe, on the other hand, is the thin, bendy strip the model above is holding in her hands — and the more versatile between the two. Since it’s extremely thin (it has a depth measuring 0.3mm), it could be used to create all kinds of wearables, such as smart necklaces and headbands, or even interactive clothing designs. According to Samsung, it has higher energy density than current comparable batteries, though it didn’t name any particular brand and model.

Read more