Toggle light / dark theme

Researchers in the Cockrell School of Engineering at The University of Texas at Austin have developed a first-of-its-kind self-healing gel that repairs and connects electronic circuits, creating opportunities to advance the development of flexible electronics, biosensors and batteries as energy storage devices.

Although technology is moving toward lighter, flexible, foldable and rollable electronics, the existing circuits that power them are not built to flex freely and repeatedly self-repair cracks or breaks that can happen from normal wear and tear.

Until now, self-healing materials have relied on application of external stimuli such as light or heat to activate repair. The UT Austin “supergel” material has high conductivity (the degree to which a material conducts electricity) and strong mechanical and electrical self-healing properties.

Read more

https://www.youtube.com/watch?v=VVA34lM3-OY&feature=youtu.be

Derek Muller of ‘Veritasium’ explores the impact of the Northeast blackout of 2003 and the innovations in energy that are essential to keeping the lights on. For more on the future of energy, check out Breakthrough’s ‘Energy on the Edge’ episode on the National Geographic Channel airing Sunday 11/29 at 9/8c.

Check Out Veritasium’s ‘How Long Will You Live’: http://bit.ly/21fLyDN

GE works on things that matter. The best people and the best technologies taking on the toughest challenges. Finding solutions in energy, health and home, transportation and finance. Building, powering, moving and curing the world. Not just imagining. Doing. GE works.

Connect with GE Online:
Visit GE’s Website: http://invent.ge
Find GE on Google +: http://invent.ge/1dPUUN5
Find GE on Tumblr: http://invent.ge/17syCNf
Find GE on Facebook: http://invent.ge/1929rzT
Follow GE on Twitter: http://invent.ge/XJAX15
Follow GE on Pinterest: http://invent.ge/16JjInY
Follow GE on Instagram: http://invent.ge/1a9XZGb
Find GE on LinkedIn: http://invent.ge/1gtUi3e

Read more

Chinese technology company Huawei has announced that its latest prototype battery fills up with power 10 times quicker than the ones in current smartphones. Huawei has been showing off the technology at the 56th Battery Symposium in Japan this week, where a 3,000mAh pack reached a 48 percent charge in just 5 minutes.

The lithium-ion batteries inside smartphones, tablets, and other similar gadgets have two main sections: an anode and a cathode. Electrons move from one section to the other while our devices are in use, and then back in the opposite direction as they are recharged.

Huawei says it has managed to bond special heteroatoms to the graphite molecules in the anode section of the battery to get this process moving faster, without decreasing energy density or battery life.

Read more

University of Washington engineers have developed a novel technology that uses a Wi-Fi router—a source of ubiquitous but untapped energy in indoor environments—to power devices.

The Power Over Wi-Fi (PoWiFi) system is one of the most innovative and game-changing technologies of the year, according to Popular Science, which included it in the magazine’s annual “Best of What’s New” awards announced Wednesday.

The technology attracted attention earlier this year when researchers published an online paper showing how they harvested energy from Wi-Fi signals to power a simple temperature sensor, a low-resolution grayscale camera and a charger for a Jawbone activity tracking bracelet.

Read more

There’s filtration and then there’s filtration. Engineers in the US have been working on the latter, coming up with a new markedly more energy-efficient way of taking the salt out of seawater, which could deliver huge advantages in terms of providing people with access to drinking water and help combat problems like drought.

The researchers have developed a material that allows high volumes of water to pass through extremely tiny holes called ‘nanopores’ while blocking salt and other contaminants. The material they’re using – a nanometre-thick sheet of molybdenum disulphide (MoS2) riddled with these nanopore holes – is the most efficient of a number of thin-film membranes that the engineers modelled, filtering up to 70 percent more water than graphene.

“Even though we have a lot of water on this planet, there is very little that is drinkable,” said Narayana Aluru, a professor of mechanical science and engineering at the University of Illinois and leader of the study. “If we could find a low-cost, efficient way to purify sea water, we would be making good strides in solving the water crisis.”

Read more

ABSTRACT

According to Einstein, General Relativity contains the essence of Mach’s ideas. Mach’s principle can be summarized by stating that the inertia of a body is determined by the rest of the mass-energy content of the universe. Inertia here arises from mass-energy there. The latter, was a statement made by John Wheeler in his 1995 book, Gravitation and Inertia, coauthored by Ciufolini. Einstein believed that to be fully Machian, gravity would need a radiative component, an action-at-a-dis- tance character, so that gravitational influences on a body from far away could be felt immediately. In 1960’s, Hoyle and Narlikar (HN) developed such a theory which was a gravitational version of the Absorber theory derived by Wheeler-Feynman for classical electrodynamics and later expanded upon by Davies and Narlikar for quantum electrodynamics. The HN-field equation has the same type of mass fluctuation terms as in the Woodward Mach effect thruster theory. The force equation, used to predict the thrust in our device, can be derived from the mass fluctuation. We outline a new method for deriving the force equation. We present new experimental tests of the thruster to show that the thrust seen in our device is not due to either heating or Dean Drive effects. Successful replications have been performed by groups in Austria and Canada, but their work is still pending in the peer review literature.

Keywords:

Mach Effect Drive, Transient Mass Fluctuations, Mach’s Principle, Action at a Distance, Advanced Waves, Event Horizon.

Read more

ABSTRACT

The Mach Effect Thruster (MET) is a propellant―less space drive which uses Mach’s principle to produce thrust in an accelerating material which is undergoing mass―energy fluctuations, [1] –[3]. Mach’s principle is a statement that the inertia of a body is the result of the gravitational interaction of the body with the rest of the mass-energy in the universe. The MET device uses electric power of 100 — 200 Watts to operate. The thrust produced by these devices, at the present time, are small on the order of a few micro-Newtons. We give a physical description of the MET device and apparatus for measuring thrusts. Next we explain the basic theory behind the device which involves gravitation and advanced waves to incorporate instantaneous action at a distance. The advanced wave concept is a means to conserve momentum of the system with the universe. There is no momentun violation in this theory. We briefly review absorber theory by summarizing Dirac, Wheeler-Feynman and Hoyle-Narlikar (HN). We show how Woodward’s mass fluctuation formula can be derived from first principles using the HN-theory which is a fully Machian version of Einstein’s relativity. HN-theory reduces to Einstein’s field equations in the limit of smooth fluid distribution of matter and a simple coordinate transformation.

Keywords:

Mach Effect Drive, Transient Mass Fluctuations, Weak Field Limit Gravitation, Modified (PPN) Parameterized Post Newtonian Approximation, Linearized Einstein Equations, Gravitoelectromagnetism.

Read more

Smartphones, laptops, and all manner of electronics have advanced by leaps in bounds over the past few decades, but an essential component of most of them — the battery, or more precisely the lithium-ion battery — hasn’t. The technological remnant of the mid-’90s has a tendency to degrade and isn’t particularly efficient, which is why scores of researchers have spent years pursuing alternatives. Until now, though, practical limitations — i.e., physical dimensions and mass manufacturing constraints — have permanently relegated many to laboratories. But a new design, a refinement of so-called lithium-air design by scientists at the University of Cambridge, looks to be one of the most feasible yet.

Lithium-air (Li-air) batteries have been around for a while — chemist K. M. Abraham is credited with developing the first rechargeable variant in 1995 — but they’ve never been considered very practical. That’s because they use carbon as an electron conductor instead of the metal-oxide found in conventional Li-ion batteries, and generate electricity from the reaction of oxygen molecules and lithium molecules, a process which leads to the production of electrically resistant lithium peroxide. As the lithium peroxide builds up, the power-producing reaction diminishes until it eventually ceases completely.

Related: Why batteries suck, and the new tech that might supercharge them.

Read more