Toggle light / dark theme

One hundred fifty years ago, Dmitri Mendeleev created the periodic table, a system for classifying atoms based on the properties of their nuclei. This week, a team of biologists studying the tree of life has unveiled a new classification system for cell nuclei, and discovered a method for transmuting one type of cell nucleus into another.

The study, which appears this week in the journal Science, emerged from several once-separate efforts. One centered on the DNA Zoo, an international consortium spanning dozens of institutions including Baylor College of Medicine, the National Science Foundation-supported Center for Theoretical Biological Physics (CTBP) at Rice University, the University of Western Australia and SeaWorld.

Scientists on the DNA Zoo team had been working together to classify how chromosomes — which can be several meters long — fold up to fit inside the nuclei of different species from across the tree of life.

When scientists first announced that they had read all of a person’s DNA 20 years ago, they were still missing some bits. Now, with the benefit of far better methods for reading DNA, it has finally been possible to read the whole thing from end to end.


Two decades after the first drafts of the human genome were published, new sequencing technologies mean it is finally complete – and could show us more than ever.

Summary: Disruptions in how the body converts cholesterol into bile acids may play a key role in the development of dementia.

Source: PLOS

The blood-brain barrier is impermeable to cholesterol, yet high blood cholesterol is associated with increased risk of Alzheimer’s disease and vascular dementia. However, the underlying mechanisms mediating this relationship are poorly understood.

Scientists say the system could be used to find ‘hidden gems’ of research and guide research funding allocations.


An artificial intelligence system trained on almost 40 years of the scientific literature correctly identified 19 out of 20 research papers that have had the greatest scientific impact on biotechnology – and has selected 50 recent papers it predicts will be among the ‘top 5%’ of biotechnology papers in the future.1

Scientists say the system could be used to find ‘hidden gems’ of research overlooked by other methods, and even to guide decisions on funding allocations so that it will be most likely to target promising research.

But it’s sparked outrage among some members of the scientific community, who claim it will entrench existing biases.

As part of preparing for an experiment aboard the International Space Station, researchers explored new ways to culture living heart cells for microgravity research. They found that cryopreservation, a process of storing cells at-80°C, makes it easier to transport these cells to the orbiting lab, providing more flexibility in launch and operations schedules. The process could benefit other biological research in space and on Earth.

The investigation, MVP Cell-03, cultured heart precursor on the station to study how microgravity affects the number of cells produced and how many of them survive. These precursor cells have potential for use in disease modeling, drug development, and , such as using cultured to replenish those damaged or lost due to cardiac disease.

Previous studies suggest that culturing such cells in simulated microgravity increases the efficiency of their production. But using live cell cultures in space presents some unique challenges. The MVP Cell-03 experiment, for example, must be conducted within a specific timeframe, when the cells are at just the right stage. Flight changes and crew availability could lead to delays that affect the research.

Since the onset of the CRISPR genetic editing revolution, scientists have been working to leverage the technology in the development of gene drives that target pathogen-spreading mosquitoes such as Anopheles and Aedes species, which spread malaria, dengue and other life-threatening diseases.

Much less genetic engineering has been devoted to Culex genus , which spread devastating afflictions stemming from West Nile virus—the leading cause of mosquito-borne disease in the continental United States—as well as other viruses such as the Japanese encephalitis virus (JEV) and the pathogen causing avian malaria, a threat to Hawaiian birds.

University of California San Diego scientists have now developed several genetic editing tools that help pave the way to an eventual gene drive designed to stop Culex mosquitoes from spreading disease. Gene drives are designed to spread modified , in this case those that disable the ability to transmit pathogens, throughout the targeted wild population.

In March of 2014, I knew my eight year old daughter was sick. Once borderline overweight, she was now skeletally thin and fading away from us. A pre-dawn ambulance ride to the hospital gave us the devastating news – our daughter had Type 1 diabetes, and would be dependent on insulin injections for the rest of her life.

This news hit me particularly hard. I’ve always been a preparedness-minded kind of guy, and I’ve worked to free myself and my family from as many of the systems of support as possible. As I sat in the dark of the Pediatric ICU watching my daughter slowly come back to us, I contemplated how tied to the medical system I had just become. She was going to need a constant supply of expensive insulin, doled out by a medical insurance system that doesn’t understand that a 90-day supply of life-saving medicine is a joke to a guy who stocks a year supply of toilet paper. Plus I had recently read an apocalyptic novel where a father watches his 12-year old diabetic daughter slip into a coma as the last of her now-unobtainable insulin went bad in an off-grid world. I swore to myself that I’d never let this happen, and set about trying to find ways to make my own insulin, just in case.

Since the start of the pandemic, scientists have been seeking to better understand immunity to the novel coronavirus. How long is a person immune after having Covid-19, after getting vaccinated, or both? And what could long-lasting immunity mean for booster shots?

It’s still too early to tell — but experts are getting closer to cracking the code.