Toggle light / dark theme

http://www.sciencedaily.com/releases/2012/08/120814100302.htm

A couple months ago I was in the Seattle public library and overheard a pierced, tatooed, and quite smelly young man telling someone he was waiting for this F-d up civilization to collapse and hoping it would happen soon. The two most likely causes of such a collapse would be an asteroid or comet impact that would throw debris into the atmosphere and stop food production for several years, or a plague. A big impact or an engineered pathogen would be the extreme in this scenario and would not simply take us back to the stone age- it would render the human race extinct.

All the disenchanted Americans who look forward to surviving the collapse of the present world order might want to consider the less fortunate areas of this planet where there is no such rule of law or any agricultural or industrial infrastructure. North Korea has gone through the classic collapse cycle during recent bad winters and the government had to repeatedly deal with widespread cannibalism. It is one of those most perfect warnings where nothing could be more crystal clear to a race of intelligent and technologically advanced beings. And we ignore it.

Turn the sunlight off for a couple years in a row and everything we know would end because everything we eat would end. Think about it the next time you watch an episode of the Walking Dead or watch a movie like The Road. Not world war Z; world war C.

AI scientist Hugo de Garis has prophesied the next great historical conflict will be between those who would build gods and those who would stop them.

It seems to be happening before our eyes as the incredible pace of scientific discovery leaves our imaginations behind.

We need only flush the toilet to power the artificial mega mind coming into existence within the next few decades. I am actually not intentionally trying to write anything bizarre- it is just this strange planet we are living on.

http://www.sciencedaily.com/releases/2012/08/120813155525.htm

http://www.sciencedaily.com/releases/2012/08/120813123034.htm

Our bodies are composed of 50 to 65 percent water. Without it – we die. Yet studies indicate that human beings are destroying this precious resource that is so vital to our very existence.

The Pacific Institute, in a 2010 report issued for Global Water Day, reports that every day, 2 million tons of sewage and industrial and agricultural waste are discharged into the world’s water — the equivalent of the weight of the entire human population of 6.8 billion people.1

The UN estimates that the amount of wastewater produced annually is about 1,500 km, six times more water than exists in all the rivers of the world. (UN WWAP, 2003) .1 In fact, more people die from unsafe water annually than from all forms of violence, including war (WHO, 2002).2 This Gallup World News report provides a summary of water problems worldwide:

Some think that safe drinking water is easy to find in nations where supermarkets are packed with bottled water – a multibillion-dollar-per-year industry. Yet if you want to drink water that does not have harmful contaminants, the challenge of finding it remains great.

In fact, the CR Way, an international movement, whose members strive to extend their lives through low-calorie, optimal nutrition, issued a warning when one of our members found that the expensive, seductively packaged bottled water brand she was drinking had radioactive radium among its components. Another member found that his bottled water source contained minerals in concentration high enough to contribute to kidney-stone formation. So it became clear that finding pure, safe drinking water is essential for our anyone who strives for optimal health.

This motivated me to take a close look at the three sources people turn to for water: municipal, bottled, and well water. Fortunately, the Environmental Working Group (EWG) – a Washington-based environmental activist organization that works to protect kids from toxic chemicals in food, water, air and the products people use – has done extensive research on this subject:

Municipal Water in the U.S.

The EWG did a three-year study of water quality in U.S. municipalities of 250,000 or more. They gathered data from tests conducted by 47,667 utilities.

EWG found more than 300 contaminants, ranging from microorganisms capable of causing disease to radioactive substances – even rocket fuel known to be toxic to the thyroid gland. And only approximately one-third of the contaminants found are even regulated by the EPA.3

Then there is the addition of chlorine, the virtually ubiquitous anti-contaminant, as well as fluorine, which is added to 80% of the municipal drinking water in the U.S. LivingTheCRWay Blog has reported on the danger of high amounts of fluorine ingestion since it is linked in some studies to brain damage, Bromine and Fluorine—Thyroid Disruption , Living The CRWay Blog, Paul McGlothin, Meredith Averill, 2012

Bottled water isn’t better.

Bottled water manufacturers are not required to release results of analysis of their water. In a 2008 EWG study of 10 bottled water brands – disinfection byproducts, fertilizer residue, and pain medication were detected – 38 pollutants in all.

The EWG also evaluated 163 brands of bottled water, finding no bottled water brand that merited their “A” ranking. Op. cit., EWG3

Well water has its own set of problems.

Well water is unregulated, so homeowners must take it upon themselves to test it. Most do not test beyond the minimum requirements to get a certificate of occupancy. Yet naturally occurring contaminants, like arsenic and radioactive radon or radium, are not uncommon in well water. Nor are coliform bacteria, which cause gastrointestinal illness.

Assembling content that informs LivingTheCRWay members and the public of the problems with drinking water and how to solve them has taken several months. These resources provide more information:

Radioactive Drinking Water

Pure Water

Bromine and Fluorine—Thyroid Disruption . Living The CRWay Blog. Paul McGlothin, Meredith Averill, 2012

As a board member of the Lifeboat Foundation, I thought it important to write this blog post since the water on which our lifeboat floats needs protection desperately.

_________

1. UN World Water Assessment Programme, 2003, IN: World Water Quality Facts and Statistics. The Pacific Institute World Water Day 2010. Available at

http://www.pacinst.org/reports/water_quality/water_quality_facts_and_stats.pdf

2. World Health Organization research, 2002, IN: World Water Quality Facts and Statistics. The Pacific Institute World Water Day 2010. Available at http://www.pacinst.org/reports/water_quality/water_quality_facts_and_stats.pdf

3. Environmental Working Group (EWG), Health/Toxics: Our Water, 2012. Available at http://www.ewg.org/ourwater

What would it take to create and later revive a representative biosphere from frozen stores located on the Moon?

The costs of launchers is getting low enough that we can reasonably imagine the establishment of a lunar base well within NASA’s spaceflight budget.

With the discovery of ices on the lunar poles, astronauts could provide their own life-support indefinitely (water, oxygen, food, and fertilizer). While living in a sheltered habitat, they then immediately proceed to establish other basic processes to step-wise become increasingly independent of supplies from Earth (e.g. producing their own metals and glass).

Given the increasing independence of the small colony, one begins to consider if additional steps could be taken to achieve a fully independent small colony to serve as a backup for the human species should a catastrophe destroy humanity (e.g. a large asteroid or our own self-replicating technology).

We wouldn’t want just for humans to survive, but that other species could eventually be reestablished as well. If species could be stored in their frozen single cell form, millions of individual organisms could be delivered to the Moon in each 5,000 kg payload delivery.

But this leads to some interesting questions:

1) We cannot save all species. There are just too many of them. So, which should we choose in order to have a broad representation of the biosphere?

2) In what biologic form should the frozen specimen be so that they can be most easily revived? Bacteria & protozoa — frozen. Fungi — spores. Plants — seeds. But what about birds, mammals, etc? We can freeze embryos, but how do we get the adult mother to gestate them?

3) How could we eventually establish Minimum Viable Populations? (say 1,000 individuals per species).

It seems to me that these questions could form the basis for interesting biology studies. The more these questions are studied, looking for plausible solutions, the more interest there would be for establishing actual terrestrial and lunar preserves for the biosphere.

Now, if you click on the BioPreserver link on this website, you will learn that the Frozen Ark is doing something rather similar to what is suggested above. However, they focus only on endangered species and not a representation of the whole biosphere. Despite significant affiliations, the rate at which they are securing different species is insufficient to imagine backing up the biosphere in any reasonable number of years.

So please comment on the above ideas and suggest how it could be advanced.

Twenty years ago, way back in the primordial soup of the early Network in an out of the way electromagnetic watering hole called USENET, this correspondent entered the previous millennium’s virtual nexus of survival-of-the-weirdest via an accelerated learning process calculated to evolve a cybernetic avatar from the Corpus Digitalis. Now, as columnist, sci-fi writer and independent filmmaker, [Cognition Factor — 2009], with Terence Mckenna, I have filmed rocket launches and solar eclipses for South African Astronomical Observatories, and produced educational programs for South African Large Telescope (SALT). Latest efforts include videography for the International Astronautical Congress in Cape Town October 2011, and a completed, soon-to-be-released, autobiography draft-titled “Journey to Everywhere”.

Cognition Factor attempts to be the world’s first ‘smart movie’, digitally orchestrated for the fusion of Left and Right Cerebral Hemispheres in order to decode civilization into an articulate verbal and visual language structured from sequential logical hypothesis based upon the following ‘Big Five’ questions,

1.) Evolution Or Extinction?
2.) What Is Consciousness?
3.) Is God A Myth?
4.) Fusion Of Science & Spirit?
5.) What Happens When You Die?

Even if you believe that imagination is more important than knowledge, you’ll need a full deck to solve the ‘Arab Spring’ epidemic, which may be a logical step in the ‘Global Equalisation Process as more and more of our Planet’s Alumni fling their hats in the air and emit primal screams approximating;
“we don’t need to accumulate (so much) wealth anymore”, in a language comprising of ‘post Einsteinian’ mathematics…

Good luck to you if you do…

Schwann Cybershaman

The Journal for Biological & Health Innovation is accepting papers for peer review now. This journal is specific to Africa and our thoughts, theory, research, practice could have a huge impact on the expeditious development of the rest of the world technologically.

A group of scientists is pushing to publish research about how they created a man-made flu virus that could potentially wipe out civilization.

The deadly virus is a genetically tweaked version of the H5N1 bird flu strain, but is far more infectious and could pass easily between millions of people at a time.

The research has caused a storm of controversy and divided scientists, with some saying it should never have been carried out.

The current strain of H5N1 has only killed 500 people and is not contagious enough to cause a global pandemic.

But there are fears the modified virus is so dangerous it could be used for bio-warfare, if it falls into the wrong hands.

Virologist Ron Fouchier of the Erasmus Medical Centre in the Netherlands lead a team of scientists who discovered that a mere five mutations to the avian virus was sufficient to make it spread far more easily.

Read more: http://www.dailymail.co.uk/sciencetech/article-2066624/Anthrax-isnt-scary-compared-Man-flu-virus-potential-wipe-millions-created-warns-frightened-scientist.html#ixzz1f4YLcKcp

After studying tables of current life expectancy (life expectancy increase per decade, in years, based upon United States National Vital Statistics) I found embedded a virtually perfect Fibonacci sequence. A Fibonacci sequence is a series of numbers as follows: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, …etc, where each number is the sum of the previous two. See here for more details on the Fibonacci sequence: http://www.mathacademy.com/pr/prime/articles/fibonac/index.asp
To my knowledge, this has not been described before. This is important because, based on my ideas regarding Global Brain acting as a catalyst for promoting extreme human lifespans (http://hplusmagazine.com/2011/03/04/indefinite-lifespans-a-natural-consequence-of-the-global-brain/), it may help us predict with some accuracy any dramatic increases in life expectancy. For example, the model predicts that the current maximum lifespan of 110-120 years will be increased to 175 in the next 20-30 years.

In simple terms, the fact that life expectancy increases in a certain manner, and this manner obeys deep-routed and universal natural laws, indicates that it may be possible to:
1. Predict life expectancy in the near future. Based on the Fibonacci sequence,
a 90 year old today, can expect to live another 5 years
a 95 year old can expect to live another 8 years
a 103 year old can expect to live another 13 years, then…
a 116 year old can expect to live another 21 years
a 137 year old would expect to live another 34 years
a 171 year old would expect to live another 55 years
a 236 year old would expect to live another 89 years
a 325 year old can expect to live another 144 years,
and so on.

2. Question the presence of ageing and death in an ever-evolving intellectually sophisticated human (who is a valuable component of the Global Brain). Based on current facts, the Fibonacci sequence with regards to life expectancy ends abruptly when lifespan reaches the limit of approximately 120 years. Why is this so? Why should a naturally extending lifespan deviate from universal natural laws? Life expectancy should continue to increase as an individual manages to survive to a certain age. The presence of ageing and death could therefore be considered unnatural.

3. Support the notion that ‘you need to live long enough to live forever’ (see Kurzweil
http://en.wikipedia.org/wiki/Fantastic_Voyage:_Live_Long_Enough_to_Live_Forever, and also De Grey’s ‘Longevity Escape Velocity’ suggestions http://www.ted.com/index.php/talks/aubrey_de_grey_says_we_can_avoid_aging.html).

Those who manage to survive to extreme age are more likely to see their life expectancy increase even further, and so on, recursively. Kurzweil believes that this scenario will be achieved through use of technology. De Grey believes that this will be achieved via biological developments. I think that this ‘live long enough to live forever’ scenario will happen naturally (with minor input both from technology and from biological research). Those individuals who fully integrate their activities within the Global Brain will experience a natural-driven ever-increasing life expectancy.

For more details see https://acrobat.com/#d=MAgyT1rkdwono-lQL6thBQ

Marios Kyriazis

Some people say that a calorie restriction (CR) diet is difficult to follow. It used to be. But things have changed: Thanks to great work by leading scientists, current approaches to calorie restriction are just as much about cell signaling as about limiting calories.

It is known, for example, that serious long-term CR dramatically lowers insulin levels.1 Another hormone, with a similar molecular structure, insulin-like growth factor one (IGF-I), shares the same pathway with insulin and is downregulated by CR in animal studies and by calorie restricted humans who do not follow high protein diets.2

And there’s the rub. For if you hope to benefit from calorie restriction and do not pay attention to the special properties of macronutrient intake, individual foods, and food preparation, you may get an unpleasant surprise: excessive stimulation of the insulin/IGF-I pathway. For example, in a study using healthy volunteers, just 50 grams of white potato starch sends glucose and insulin soaring3 to levels associated with increased risk of cancer, heart disease and diabetes.4

Back in the 1930s, when the term calorie restriction was first applied to Dr. Clive McCay’s rat and mouse experiments,5 it was entirely appropriate because the focus was on calories since he was looking at growth retardation. Of course, little was known about the signals involved in the life-extending effects of the diet. All that changed as scientists discovered important cell-signaling patterns that produce the phenomenal life-transforming effects.6

In 2008, The CR Way took the latest CR science and crafted it into a holistic lifestyle that makes following a CR diet easier by transforming it into a happy, positive lifestyle that focuses on living better now and quite possibly living longer. Recipes, food choices, and lifestyle are deliciously and strategically planned to reduce the insulin / IGF-I pathway activity – making disease risk plummet, while increasing the probability of a longer life.
# # #
__________
1. Fontana L, Meyer T.E., Klein S, Holloszy J.O. Long-Term Calorie Restriction Is Highly Effective In Reducing The Risk For Atherosclerosis In Humans. Proceedings of the National Academy of Science USA 2004;101(17):6659–6663.
2. Fontana L, Klein S, Holloszy J.O. Long-term low-protein low-calorie diet and endurance exercise modulate metabolic factors associated with cancer risk. American Journal of Clinical Nutrition. 2006;84:1456–62.
3.Brand-Miller JC, et al. Mean changes in plasma glucose and insulin responses in 10 young adults after consumption of 50g carbohydrates from potato (high-glycemic index; GI) or barley (low-GI) meal. American Journal of Clinical Nutrition. 2005 Aug;82(2):350–4
4. Guideline for Management of Post-meal Glucose, International Diabetes Federation, 2007 ISBN 2−930229−48−9
5. McCay CM, Crowell MF, Maynard LA. Journal of Nutrition. l0:63–79, 1935
6. McGlothin PS, Averill MS. Advances in Calorie restriction. Antiaging Medicine. 2009 Aug;4(4):440–441

Perhaps the most important lesson, which I have learned from Mises, was a lesson located outside economics itself. What Mises taught us in his writings, in his lectures, in his seminars, and in perhaps everything he said, was that economics—yes, and I mean sound economics, Austrian economics—is primordially, crucially important. Economics is not an intellectual game. Economics is deadly serious. The very future of mankind —of civilization—depends, in Mises’ view, upon widespread understanding of, and respect for, the principles of economics.

This is a lesson, which is located almost entirely outside economics proper. But all Mises’ work depended ultimately upon this tenet. Almost invariably, a scientist is motivated by values not strictly part of the science itself. The lust for fame, for material rewards—even the pure love of truth—these goals may possibly be fulfilled by scientific success, but are themselves not identified by science as worthwhile goals. What drove Mises, what accounted for his passionate dedication, his ability to calmly ignore the sneers of, and the isolation imposed by academic contemporaries, was his conviction that the survival of mankind depends on the development and dissemination of Austrian economics…

Austrian economics is not simply a matter of intellectual problem solving, like a challenging crossword puzzle, but literally a matter of the life or death of the human race.

–Israel M. Kirzner, Society for the Development of Austrian Economics Lifetime Achievement Award Acceptance Speech, 2006

Dear Lifeboat Foundation family & friends,

This 243-page thesis and this 16-page executive summary deliver a tenable, game-theoretical solution to this complex global dilemma:

Our narrative tables evolutionarily stable strategy for the problem of sustainable economic development on earth and other earth-like planets. In order to accomplish the task at hand with so few words, we hit the ground running with an exploration of Bertrand Russell’s conjecture that economic power is a derivative function of military power. Next we contextualize the formidable obstacle presented of teleological thinking. Third, we introduce Truly Non-cooperative Games – axioms and complimentary negotiation models developed to analyze a myriad of politico-economic problems, including the problem of sustainable economic development. Here we present The Principle of Relative Insularity, a unified theory of value which unites economics, astrophysics, and biology. Finally, we offer a synthetic narrative in which we explore several crucial logical implications that follow from our findings.

Those interested in background details and/or a deeper exploration of the logical implications that follow from this theoretical development may wish to pursue a few pages of an comprehensive, creative, and thoroughly exhaustive letter of introduction to this abridged synthesis: The Principles of Economics & Evolution: A Survival Guide for the Inhabitants of Small Islands, Including the Inhabitants of the Small Island of Earth.

Those interested in considering how this game-theoretical solution informs “evolutionarily stable” investment strategy may also wish to take in a brief overview of my PhD research: On the Problem of Modern Portfolio Theory: In Search of a Timeless & Universal Investment Perspective.

Please feel free to post all thoughts, comments, criticisms, and suggestions.

Thanks for reading!

Sincerely,

Matt Funk, FLS, BSc, MA, MFA, PhD Candidate, University of Malta, Department of Banking & Finance

PS: The author would like to thank the Lifeboat Foundation, Linnean Society of London, Property and Environment Research Center, Society for Range Management, Professors Kurial, Nagarajan, Baldacchino, Fielding, Falzon (University of Malta), Lockwood (University of Wyoming), MacKinnon (Memorial University), Sloan (Lancaster University), McKenna (Notre Dame), Schlicht (Ludwig-Maximilians- Universität München) and his dedicated team at MPRA, author & astronomer Jeff Kanipe, Dr Willard S. Boyle, Dr John Harris, fellow students, family, and friends for their priceless guidance, support, and encouragement. He also sends out a very special thanks to Professors Frey (Universität Zürich), Selten (Universität Bonn), and Nash (Princeton University) for their originality, independence, and inspiration.