Toggle light / dark theme

Zura Kakushadze is lead author of this peer reviewed paper published by the Free University of Tbilisi. It describes an information paradox that arises in a materialist’s description of the Universe—if we assume that the Universe is 100% quantum. The observation of the paradox stems from an interdisciplinary thought process whereby the Universe can be viewed as a “quantum computer”.

The presentation is intentionally nontechnical to make it accessible to a wide a readership.

Does the Universe Have a Hard Drive?

  • The universe radiates only half as much energy as 2 billion years ago
  • New findings establish cosmos’ decline with unprecedented precision

From CNN
—The universe came in with the biggest bang ever. But now, with a drooping fizzle, it is in its swan song. The conclusion of a new astronomical study pulls no punches on this: “The Universe is slowly dying,” it reads.

Astronomers have believed as much for years, but the new findings establish the cosmos’ decline with unprecedented precision. An international team of 100 scientists used data from the world’s most powerful telescopes — based on land and in space — to study energy coming from more than 200,000 galaxies in a large sliver of the observable universe. [Full story below or at]…

Based on those observations, they have confirmed the cosmos is radiating only half as much energy as it was 2 billion years ago. The astronomers published their study on Monday on the website of the European Southern Observatory.

Analysis across many wavelengths shows the universe's electromagnetic energy output is dropping.The team checked the energy across a broad spectrum of lightwaves and other electromagnetic radiation and says it is fading through all wavelengths, from ultraviolet to far infrared.

Analysis across many wavelengths shows the universe’s electromagnetic energy output is dropping.

‘A cold, dark and desolate place’

At the ripe old age of nearly 13.8 billion years, the universe has arrived in its sunset years.

“The universe has basically sat down on the sofa, pulled up a blanket and is about to nod off for an eternal doze,” said astronomer Simon Driver, who led the team.

Death does not mean the universe will go away. It will still be there, but its stars and all else that produces light and stellar fire will fizzle out.

“It will just grow old forever, slowly converting less and less mass into energy as billions of years pass by until eventually, it will become a cold, dark and desolate place, where all of the lights go out,” said astronomer Luke Davies.

But don’t cry for the universe anytime soon. Astrophysicists say this will take trillions of years.

Bursting with energy

Go all the way back to its birth, and you find a vast contrast. In an infinitesimal fraction of a second, our entire cosmos blasted into existence in the Big Bang.

And the totality of the energy and mass in the universe originates from that moment, astronomers say.

Since that natal explosion, the cosmos has generated other sources of brilliant radiation — most notably stars — by converting some of the mass into energy when extreme gravity causes matter to burst into nuclear fusion.

But the universe is speckled by radiance from seething gas clouds, supernovas and, most spectacularly, the discs of hot matter that rotate around black holes to form quasars, which can be as bright as whole galaxies.

“While most of the energy sloshing around in the universe arose in the aftermath of the Big Bang, additional energy is constantly being generated by stars as they fuse elements like hydrogen and helium together,” Driver said.

Fizzling into space

The size and number of those sources of radiation so boggle the mind that it might be hard to imagine that the entirety of that vividness appears to be fading, as its energy flies off through space.

“This new energy is either absorbed by dust as it travels through the host galaxy, or escapes into intergalactic space and travels until it hits something, such as another star, a planet, or, very occasionally, a telescope mirror,” Driver said.

His team observed it from seven of the world’s mammoth telescopes spread out between Australia, the United States, Chile and Earth’s orbit. Many of the instruments specialize in receiving certain wavelengths of light and other electromagnetic waves.

Compiling the data from the collective wavelengths gives the scientists a more complete picture from across a broad spectrum of energy.

Their findings on the universe’s energy slump were part of the larger Galaxy And Mass Assembly, or GAMA, project to study how galaxies are formed. It has mapped out the position of 4 million galaxies so far.

To achieve interstellar travel, the Kline Directive instructs us to be bold, to explore what others have not, to seek what others will not, to change what others dare not. To extend the boundaries of our knowledge, to advocate new methods, techniques and research, to sponsor change not status quo, on 5 fronts, Legal Standing, Safety Awareness, Economic Viability, Theoretical-Empirical Relationships, and Technological Feasibility.

There is one last mistake in physics that needs to be addressed. This is the baking bread model. To quote from the NASA page,

“The expanding raisin bread model at left illustrates why this proportion law is important. If every portion of the bread expands by the same amount in a given interval of time, then the raisins would recede from each other with exactly a Hubble type expansion law. In a given time interval, a nearby raisin would move relatively little, but a distant raisin would move relatively farther — and the same behavior would be seen from any raisin in the loaf. In other words, the Hubble law is just what one would expect for a homogeneous expanding universe, as predicted by the Big Bang theory. Moreover no raisin, or galaxy, occupies a special place in this universe — unless you get too close to the edge of the loaf where the analogy breaks down.”

Notice the two qualifications the obvious one is “unless you get too close to the edge of the loaf where the analogy breaks down”. The second is that this description is only correct from the perspective of velocity. But there is a problem with this.

Look up in the night sky, and you can see the band of stars called the Milky Way. It helps if you are up in the Rocky Mountains above 7,000 ft. (2,133 m) away from the city lights. Dan Duriscoe produced one of the best pictures of our Milky Way from Death Valley, California that I have seen.

What do you notice?

I saw a very beautiful band of stars rising above the horizon, and one of my friends pointed to it and said “That is the Milky Way”. Wow! We could actually see our own galaxy from within.

Hint. The Earth is half way between the center of the Milky Way and the outer edge.

What do you notice?

We are not at the edge of the Milky Way, we are half way inside it. So “unless you get too close to the edge of the loaf where the analogy breaks down” should not happen. Right?

Wrong. We are only half way in and we see the Milky Way severely constrained to a narrow band of stars. That is if the baking bread model is to be correct we have to be far from the center of the Milky Way. This is not the case.

The Universe is on the order of 103 to 106 times larger. Using our Milky Way as an example the Universe should look like a large smudge on one side and a small smudge on the other side if we are even half way out. We should see two equally sized smudges if we are at the center of the Universe! And more importantly by the size of the smudges we could calculate our position with respect to the center of the Universe! But the Hubble pictures show us that this is not the case! We do not see directional smudges, but a random and even distribution of galaxies across the sky in any direction we look.

Therefore the baking bread model is an incorrect model of the Universe and necessarily any theoretical model that is dependent on the baking bread structure of the Universe is incorrect.

We know that we are not at the center of the Universe. The Universe is not geocentric. Neither is it heliocentric. The Universe is such that anywhere we are in the Universe, the distribution of galaxies across the sky must be the same.

Einstein (TV series Cosmic Journey, Episode 11, Is the Universe Infinite?) once described an infinite Universe being the surface of a finite sphere. If the Universe was a 4-dimensional surface of a 4-dimensional sphere, then all the galaxies would be expanding away from each other, from any perspective or from any position on this surface. And, more importantly, unlike the baking bread model one could not have a ‘center’ reference point on this surface. That is the Universe would be ‘isoacentric’ and both the velocity property and the center property would hold simultaneously.

Previous post in the Kline Directive series.

Next post in the Kline Directive series.


Benjamin T Solomon is the author & principal investigator of the 12-year study into the theoretical & technological feasibility of gravitation modification, titled An Introduction to Gravity Modification, to achieve interstellar travel in our lifetimes. For more information visit iSETI LLC, Interstellar Space Exploration Technology Initiative.

Solomon is inviting all serious participants to his LinkedIn Group Interstellar Travel & Gravity Modification.