Aging destroys fitness. How could aging have evolved? Below is my answer to this question. This is mainstream science from peer-reviewed journals [Ref 1, Ref 2, Ref 3] , but it is my science, and as Richard Feynman warned us*, I’m the last one who can be objective about the merits of this theory. — Josh Mitteldorf
Too fit for its own good
In 1874, a swarm of Rocky Mountain Locusts descended on the American midwest. They covered the sky and shadowed the earth underneath for hundreds of miles. A single cloud was larger than the state of California. Once on the ground, they ate everything that was green, leaving behind a dust bowl. The earth was thick with egg masses, ready to renew the plague the following year.
Laura Ingalls Wilder wrote in her childhood memoir (in the third person)
Huge brown grasshoppers were hitting the ground all around her, hitting her head and her face and her arms. They came thudding down like hail. The cloud was hailing grasshoppers. The cloud was grasshoppers. Their bodies hid the sun and made darkness. Their thin, large wings gleamed and glittered. The rasping, whirring of their wings filled the whole air and they hit the ground and the house with the noise of a hailstorm. Laura tried to beat them off. Their claws clung to her skin and her dress. They looked at her with bulging eyes, turning their heads this way and that. Mary ran screaming into the house. Grasshoppers covered the ground, there was not one bare bit to step on. Laura had to step on grasshoppers and they smashed squirming and slimy under her feet.
The locusts returned in several more seasons, but the last reported sighting of a Rocky Mountain locust was in 1902. There are preserved specimens in museums and laboratories today, but no living locusts. Entomologists interested in the locust’s rise and fall travel to the glaciers of Wyoming, mining hundred-year-old ice for carcasses that they might study.
Where did they go? The Rocky Mountain Locust drove itself to extinction by overshooting its sustainable population.
Every animal species is part of a food web, and depends on an ecosystem to survive. If the ecosystem collapse, it takes down every species and every individual with it. Because of their mobility, the locusts were able to devastate many ecosystems, denuding one landscape, then flying hundreds of miles to deposit their children in a fresh location. Animals that can’t fly become victims of their own greed much more quickly than the locust. If the lions killed every gazelle on the Serengeti, how long would it be before the lions were gone, too?
Evolution of Individuals and Groups
How would an evolutionary biologist describe this situation? Were the locusts too fit for their own good? To capture this story, you have to distinguish between individual fitness and collective fitness. Individually, these locusts were super-competitors. Collectively, they were a circular firing squad. The science of individual fitness and collective fitness is called Multi-level Selection Theory, and it has been spearheaded by David S Wilson of Binghamton University, based on theoretical foundations by George Price. MLS is regarded with suspicion by most evolutionary biologists, but embraced by a minority as sound science.
Selfish organisms that consume as much of the available food species as possible may thrive for a time. They may crowd out other individuals of the same species that compete less aggressively. But as soon as their kind grows to be the majority, they are doomed – they wipe out the food source on which their children depend.
Animals are evolved to be “prudent predators”†. Species that have exploited their food sources too aggressively, or that have reproduced too fast have become extinct in a series of local population crashes. These extinctions have been a potent force of natural selection, counterbalancing the better-known selective pressure toward ever faster and more prolific reproduction.
How did Evolutionary Theory go Wrong?
This is an idea that has common-sense appeal to anyone who thinks logically and practically about evolutionary science. In order not to to appreciate this idea, you need years of training in the mathematical science of evolutionary genetics. Evolutionary genetics is an axiomatic framework, built up logically from postulates that sound reasonable, but the conclusions to which they lead are deeply at odds with the biological world we see. This is the “selfish gene” theory that says all cooperation in nature is a sort of illusion, based on a gene’s tendency to encourage behaviors that promote the welfare of other copies of the same gene in closely-related individuals.
The “selfish gene” is an idea that should have been rejected long ago, as absurd on its face. Yes, there is plenty of selfishness and aggression in nature. But nature is also rich with examples of cooperation between unrelated individuals, and even cooperation across species lines, which is called “co-evolution”. Species become intimately adapted to depend on tiny details of the other’s shape or habits or chemistry. Examples of this are everywhere, from the bacteria in your gut to the flowers and the honeybees. In the same way, predators and their prey (I’m using this word to include plant as well as animal food sources) adapt to be able to co-exist for the long haul. It is obvious to every naturalist that there is a temperance in nature’s communities, that when ecosystems are out of balance they don’t last very long.
It makes good scientific sense that extinctions from overpopulation are a powerful evolutionary force, and it is part of Darwin’s legacy as well. Natural selection is more than merely a race among individuals to reproduce the fastest. The very word “fitness” came from an ability to fit well into the life of the local community.
But beginning some forty years after Darwin’s death, mathematical thinking has led the evolutionary theorists astray. They have forgotten the first principle of science, which is that every theory must be validated by comparing predictions from the theory to the world we see around us. Predictions of the selfish gene theory work well in the genetics lab, but as a description of nature, they fail spectacularly.
Understanding Aging based on Multi-level Selection
If we are willing to look past the “selfish gene” and embrace the science of multi-level selection, we can understand aging as a tribute paid by the individual in support of the ecosystem. If it weren’t for aging, the only way that individuals would die would be by starvation, by diseases, and by predation. All three of these tend to be “clumpy” – that is to say that either no one is dying or everyone is dying at once. Until food species are exhausted, there is no starvation; but then there is a famine, and everyone dies at once. If a disease strikes a community in which everyone is at the peak of their immunological fitness, then either everyone can fend it off, or else everyone dies in an epidemic. And without aging, even death by predation would be very clumpy. Many large predators are just fast enough to catch the aging, crippled prey individuals. If this were not so, then either all the prey would be vulnerable to predators, or none of them would be. There could be no lasting balance between predators and prey.
Aging helps to level the death rate in good times and bad. Without aging, horde dynamics would prevail, as deaths would occur primarily in famines and epidemics. Population would swing wildly up and down. With aging comes the possibility of predictable life spans and death rates that don’t alternately soar and plummet. Ecosystems can have some stability and some persistence.
Aging is plastic, providing further support for ecosystem stability
This would be true even if aging operated on a fixed schedule; but natural selection has created an adaptive aging clock, which further enhances the stabilizing effect. When there is a famine and many animals are dying of starvation, the death rate from old age is down, because of the Caloric Restriction effect. In times of famine and other environmental stress, the death rate from aging actually takes a vacation, because animals become hardier and age more slowly.
When we ask “Why does an animal live longer when it is starving?” the answer is, of course, that the ability to last out a famine and re-seed the population when food once again becomes plentiful provides a great selective advantage. This may sound like it is an adaptation for individual survival, consistent with the selfish gene. But we might ask the same question conversely: “Why does an animal have a shorter life span when there is plenty to eat?” When we look at it this way, it is clear that tying aging to food cannot be explained in terms of the selfish gene. In order to be able to live longer under conditions of starvation, animals must be genetically programmed to hold some fitness in reserve when they have plenty to eat, and this offers an advantage only to the community, not to the individual.
Hormesis is an important clue concerning the evolutionary meaning of aging. This word refers to the fact that when an individual is in a challenging environment, its metabolism doesn’t just compensate to mitigate the damage, but it overcompensates. It becomes so much stronger that it lives longer with challenge than without. The best-known example is that people (and animals) live longer when they’re underfed than when they’re overfed. We also know that exercise tends to increase our life expectancy, despite the fact that exercise generates copious free radicals (ROS) that ought to be pro-aging in their effect.
Without aging, it is difficult for nature to put together a stable ecosystem. Populations are either rising exponentially or collapsing to zero. With aging, it becomes possible to balance birth and death rates, and population growth and subsequent crashes are tamed sufficiently that ecosystems may persist. This is the evolutionary meaning of aging: Aging is a group-selected adaptation for the purpose of damping the wild swings in death rate to which natural populations are prone. Aging helps to make possible stable ecosystems.
___________
“ The first principle is that you must not fool yourself, and you are the easiest person to fool.” — R P Feynman (from the Galileo Symposium, 1964)
† Here “predator” can mean herbivore as well as carnivore. This is the common usage in ecology.
Immortal Life has complied an edited volume of essays, arguments, and debates about Immortalism titled Human Destiny is to Eliminate Death from many esteemed ImmortalLife.info Authors (a good number of whom are also Lifeboat Foundation Advisory Board members as well), such as Martine Rothblatt (Ph.D, MBA, J.D.), Marios Kyriazis (MD, MS.c, MI.Biol, C.Biol.), Maria Konovalenko (M.Sc.), Mike Perry (Ph.D), Dick Pelletier, Khannea Suntzu, David Kekich (Founder & CEO of MaxLife Foundation), Hank Pellissier (Founder of Immortal Life), Eric Schulke & Franco Cortese (the previous Managing Directors of Immortal Life), Gennady Stolyarov II, Jason Xu (Director of Longevity Party China and Longevity Party Taiwan), Teresa Belcher, Joern Pallensen and more. The anthology was edited by Immortal Life Founder & Senior Editor, Hank Pellissier.
This one-of-a-kind collection features ten debates that originated at ImmortalLife.info, plus 36 articles, essays and diatribes by many of IL’s contributors, on topics from nutrition to mind-filing, from teleomeres to “Deathism”, from libertarian life-extending suggestions to religion’s role in RLE to immortalism as a human rights issue.
The book is illustrated with famous paintings on the subject of aging and death, by artists such as Goya, Picasso, Cezanne, Dali, and numerous others.
The book was designed by Wendy Stolyarov; edited by Hank Pellissier; published by the Center for Transhumanity. This edited volume is the first in a series of quarterly anthologies planned by Immortal Life
This Immortal Life Anthology includes essays, articles, rants and debates by and between some of the leading voices in Immortalism, Radical Life-Extension, Superlongevity and Anti-Aging Medicine.
A (Partial) List of the Debaters & Essay Contributors:
Martine Rothblatt Ph.D, MBA, J.D. — inventor of satellite radio, founder of Sirius XM and founder of the Terasem Movement, which promotes technological immortality. Dr. Rothblatt is the author of books on gender freedom (Apartheid of Sex, 1995), genomics (Unzipped Genes, 1997) and xenotransplantation (Your Life or Mine, 2003).
Marios Kyriazis MD, MSc, MIBiol, CBiol. founded the British Longevity Society, was the first to address the free-radical theory of aging in a formal mainstream UK medical journal, has authored dozens of books on life-extension and has discussed indefinite longevity in 700 articles, lectures and media appearances globally.
Maria Konovalenko is a molecular biophysicist and the program coordinator for the Science for Life Extension Foundation. She earned her M.Sc. degree in Molecular Biological Physics at the Moscow Institute of Physics and Technology. She is a co-founder of the International Longevity Alliance.
Jason Xu is the director of Longevity Party China and Longevity Party Taiwan, and he was an intern at SENS.
Mike Perry, PhD. has worked for Alcor since 1989 as Care Services Manager. He has authored or contributed to the automated cooldown and perfusion modeling programs. He is a regular contributor to Alcor newsletters. He has been a member of Alcor since 1984.
David A. Kekich, Founder, President & C.E.O Maximum Life Extension Foundation, works to raise funds for life-extension research. He serves as a Board Member of the American Aging Association, Life Extension Buyers’ Club and Alcor Life Extension Foundation Patient Care Trust Fund. He authored Smart, Strong and Sexy at 100?, a how-to book for extreme life extension.
Eric Schulke is the founder of the Movement for Indefinite Life Extension (MILE). He was a Director, Teams Coordinator and ran Marketing & Outreach at the Immortality Institute, now known as Longecity, for 4 years. He is the Co-Managing Director of Immortal Life.
Hank Pellissier is the Founder & Senior Editor of ImmortaLife.info. Previously, he was the founder/director of Transhumanity.net. Before that, he was Managing Director of the Institute for Ethics and Emerging Technology (ieet.org). He’s written over 120 futurist articles for IEET, Hplusmagazine.com, Transhumanity.net, ImmortalLife.info and the World Future Society.
Franco Cortese is on the Advisory Board for Lifeboat Foundation on their Scientific Advisory Board (Life-Extension Sub-Board) and their Futurism Board. He is the Co-Managing Director alongside of Immortal Life and a Staff Editor for Transhumanity. He has written over 40 futurist articles and essays for H+ Magazine, The Institute for Ethics & Emerging Technologies, Immortal Life, Transhumanity and The Rational Argumentator.
Gennady Stolyarov II is a Staff Editor for Transhumanity, Contributor to Enter Stage Right, Le Quebecois Libre, Rebirth of Reason, Ludwig von Mises Institute, Senior Writer for The Liberal Institute, and Editor-in-Chief of The Rational Argumentator.
Brandon King is Co-Director of the United States Longevity Party.
Khannea Suntzu is a transhumanist and virtual activist, and has been covered in articles in Le Monde, CGW and Forbes.
Teresa Belcher is an author, blogger, Buddhist, consultant for anti-aging, life extension, healthy life style and happiness, and owner of Anti-Aging Insights.
Dick Pelletier is a weekly columnist who writes about future science and technologies for numerous publications.
Joern Pallensen has written articles for Transhumanity and the Institute for Ethics and Emerging Technologies.
CONTENTS:
Editor’s Introduction
DEBATES
1. In The Future, With Immortality, Will There Still Be Children?
2. Will Religions promising “Heaven” just Vanish, when Immortality on Earth is attained?
3. In the Future when Humans are Immortal — what will happen to Marriage?
4. Will Immortality Change Prison Sentences? Will Execution and Life-Behind-Bars be… Too Sadistic?
5. Will Government Funding End Death, or will it be Attained by Private Investment?
6. Will “Meatbag” Bodies ever be Immortal? Is “Cyborgization” the only Logical Path?
7. When Immortality is Attained, will People be More — or Less — Interested in Sex?
8. Should Foes of Immortality be Ridiculed as “Deathists” and “Suicidalists”?
9. What’s the Best Strategy to Achieve Indefinite Life Extension?
ESSAYS
1. Maria Konovalenko:
I am an “Aging Fighter” Because Life is the Main Human Right, Demand, and Desire
2. Mike Perry:
Deconstructing Deathism — Answering Objections to Immortality
3. David A. Kekich:
How Old Are You Now?
4. David A. Kekich:
Live Long… and the World Prospers
5. David A. Kekich:
107,000,000,000 — what does this number signify?
6. Franco Cortese:
Religion vs. Radical Longevity: Belief in Heaven is the Biggest Barrier to Eternal Life?!
7. Dick Pelletier:
Stem Cells and Bioprinters Take Aim at Heart Disease, Cancer, Aging
8. Dick Pelletier:
Nanotech to Eliminate Disease, Old Age; Even Poverty
9. Dick Pelletier:
Indefinite Lifespan Possible in 20 Years, Expert Predicts
10. Dick Pelletier:
End of Aging: Life in a World where People no longer Grow Old and Die
11. Eric Schulke:
We Owe Pursuit of Indefinite Life Extension to Our Ancestors
12. Eric Schulke:
Radical Life Extension and the Spirit at the core of a Human Rights Movement
13. Eric Schulke:
MILE: Guide to the Movement for Indefinite Life Extension
14. Gennady Stolyarov II:
The Real War and Why Inter-Human Wars Are a Distraction
15. Gennady Stolyarov II:
The Breakthrough Prize in Life Sciences — turning the tide for life extension
16. Gennady Stolyarov II:
Six Libertarian Reforms to Accelerate Life Extension
17. Hank Pellissier:
Wake Up, Deathists! — You DO Want to LIVE for 10,000 Years!
18. Hank Pellissier:
Top 12 Towns for a Healthy Long Life
19. Hank Pellissier:
This list of 30 Billionaires — Which One Will End Aging and Death?
20. Hank Pellissier:
People Who Don’t Want to Live Forever are Just “Suicidal”
21. Hank Pellissier:
Eluding the Grim Reaper with 23andMe.com
22. Hank Pellissier:
Sixty Years Old — is my future short and messy, or long and glorious?
23. Jason Xu:
The Unstoppable Longevity Virus
24. Joern Pallensen:
Vegetarians Live Longer, Happier Lives
25. Franco Cortese:
Killing Deathist Cliches: Death to “Death-Gives-Meaning-to-Life”
26. Marios Kyriazis:
Environmental Enrichment — Practical Steps Towards Indefinite Lifespans
27. Khannea Suntzu:
Living Forever — the Biggest Fear in the most Audacious Hope
28. Martine Rothblatt:
What is Techno-Immortality?
29. Teresa Belcher:
Top Ten Anti-Aging Supplements
30. Teresa Belcher:
Keep Your Brain Young! — tips on maintaining healthy cognitive function
31. Teresa Belcher:
Anti-Aging Exercise, Diet, and Lifestyle Tips
32. Teresa Belcher:
How Engineered Stem Cells May Enable Youthful Immortality
33. Teresa Belcher:
Nanomedicine — an Introductory Explanation
34. Rich Lee:
“If Eternal Life is a Medical Possibility, I Will Have It Because I Am A Tech Pirate”
“I zoomed in as she approached the steps of the bridge, taking voyeuristic pleasure in seeing her pixelated cleavage fill the screen.
What was it about those electronic dots that had the power to turn people on? There was nothing real in them, but that never stopped millions of people every day, male and female, from deriving sexual gratification by interacting with those points of light.
Transhumanism is about using technology to improve the human condition. Perhaps a nascent stigma attached to the transhumanist movement in some circles comes from the ethical implications and usage of high technology — bio-tech and nano-tech to name a few, on people. Yet, being transhuman does not necessarily have to be associated with bio-hacking the human body, or entail the donning of cyborg-like prosthetics. Although it is hard not to plainly see and recognize the benefits such human augmentation technology has, for persons in need.
Orgasms and Longevity:
Today, how many normal people, even staunch theists, can claim not to use sexual aids and visual stimulation in the form of video or interaction via video, to achieve sexual satisfaction? It’s hard to deny the therapeutic effect an orgasm has in improving the human condition. In brief, some benefits to health and longevity associated with regular sex and orgasms:
When we orgasm we release hormones, including oxytocin and vasopressin. Oxytocin equals relaxation, and when released it can help us calm down and feel euphoric.
People having more sex add years to their lifespan. Dr. Oz touts a 200 orgasms a year guideline. [1]
While orgasms usually occur as a result of physical sexual activity, there is no conclusive study that proves beneficial orgasms are only produced when sexual activity involves two humans. Erotica in the form of literature and later, moving images, have been used to stimulate the mind into inducing an orgasm for a good many centuries in the absence of a human partner. As technology is the key enabler in stimulating the mind, what might the sexual choices (preferences?) of the human race — the Transhuman be, going forward?
(Gray Scott speaking on Sexbots at 1:19 minutes into the video)
SexBots and Digital Surrogates [Dirrogates]
Sexbots, or sex robots can come in two forms. Fully digital incarnations with AI, viewed through Augmented Reality visors, or as physical robots — advanced enough to pass off as human surrogates. The porn industry has always been at the fore-front of video and interactive innovation, experimenting with means of immersing the audience into the “action”. Gonzo Porn [3] is one such technique that started off as a passive linear viewing experience, then progressed to multi-angle DVD interactivity and now to Virtual Reality first person point-of-view interactivity.
Augmented Reality and Digital Surrogates of porn stars performing with AI built in, will be the next logical step. How could this be accomplished?
Somewhere on hard-drives in Hollywood studios, there are full body digital models and “performance capture” files of actors and actresses. When these perf-cap files are assigned to any suitable 3D CGI model, an animator can bring to life the Digital Surrogate [Dirrogate] of the original actor. Coupled with realistic skin rendering using Separable Subsurface Scattering (SSSS) rendering techniques [4] for instance, and with AI “behaviour” libraries, these Dirrogates can populate the real world, enter living-rooms and change or uplift the mood of person — for the better.
(The above video is for illustration purposes of 3D model data-sets and perf-capture)
With 3D printing of human body parts now possible and blue prints coming online [5] with full mechanical assembly instructions, the other kind of sexbot is possible. It won’t be long before the 3D laser-scanned blueprint of a porn star sexbot will be available for licensing and home printing, at which point, the average person will willingly transition to transhuman status once the ‘buy now’ button has been clicked.
Programmable matter — Claytronics [6] will take this technology to even more sophisticated levels.
Sexbots and Ethics:
If we look at Digital Surrogate Sexbot technology, which is a progression of interactive porn, we can see the technology to create such Dirrogate sexbots exists today, and better iterations will come about in the next couple of years. Augmented Reality hardware when married to wearable technology such as ‘fundawear’ [7] and a photo-realistic Dirrogate driven by perf-captured libraries of porn stars under software (AI) control, can bring endless sessions of sexual pleasure to males and females.
Things get complicated as technology evolves, and to borrow a term from Kurzweil, exponentially. Recently the Kinect 2 was announced. This off the shelf hardware ‘game controller’ in the hands of capable hackers has shown what is possible. It can be used as a full body performance capture solution, a 3D laser scanner that can build a replica of a room in realtime and more…
Which means, during a dirrogate sexbot session where a human wears an Augmented Reality visor such as Meta-glass [8], it would be possible to connect via the internet to your partner, wife or husband and have their live perf-capture session captured by a Kinect 2 controller and drive the photo-realistic Dirrogate of your favorite pornstar.
Would this be the makings of Transhumanist adultry? Some other ethical issues to ponder:
Thou shalt not covet their neighbors wife — But there is no commandant about pirating her perf-capture file.
Will humans, both male or female, prefer sexbots versus human partners for sexual fulfillment? — Will oxytocin release make humans “feel” for their sexbots?
As AI algorithms get better…bordering on artificial sentience, will sexbots start asking for “Dirrogate Rights”?
These are only some of the points worth considering… and if these seem like plausible concerns, imagine what happens in the case of humanoid like physical Sex-bots. As Gray Scott mentions in his video above.
As we evolve into Transhumans, we will find ourselves asking that all important question “What is Real?”
“It will all be down to our perception of reality”. – Memories with Maya
It may be possible one day to use effective biotechnological therapies in order to achieve extreme lifespans. In the meantime, instead of just waiting for these therapies, it may be more fruitful to live a life of constant stimulation, hyper-connection and avoidance of regularity. This is something that everybody can do today, and may have a direct impact upon radical life extension, not only for the individual but also for society.
For some time now I have been advocating the notion that exposure to meaningful information may be one way of achieving radical life extension. By meaningful information I mean anything that requires action, and not just feeding your brain with routine sets of data. Examples of this include being hyper-connected in a digital world, an enriched environment (both in the personal space and in society as a whole), a hormetic lifestyle, behavioural models such as a goal-seeking behaviour, search for excellence, and a bias for action, as well as the pursuit innovation, diversification, creativity and novelty. Most importantly, the avoidance of routine and mediocrity.
This information-rich lifestyle up-regulates the function of the brain and may have an impact upon cell immortalisation. In my latest paper (http://arxiv.org/abs/1306.2734 I provide an explanation of the exact mechanisms. I argue that the relentless exposure to useful information creates new and persisting demands for energy resources in order for this information to be assimilated by the neurons. If this process continues for some time, there will come a point where our biological mechanisms will undergo a phase transition, in effect creating a new biology. Not one based on sex and reproduction but one based on information and somatic survival.
One possible mechanism involves the immortalisation sequences of germ cells. As we know, the DNA in germ cells is essentially immortal because it is somehow able to repair age-related damage effectively. Recent research shows that some of these immortalisation mechanisms do not originate from the germ cells but from the somatic cells! In other words, our bodily cells create biological material such as error-free sequences of DNA and instead of using this themselves for their own survival, they pass it on to the germ cells to assure the survival of the species. This means that the germ-line remains immortal whereas the bodily cells eventually age and die.
The process may be forcibly changed, by overloading the system with high quality actionable information. As explained above, the assimilation of this information demands so much energy and resources from the organism that there will come a point when nature will have to make a choice: is it more economical from the thermodynamic point of view to continue the current cycle of birth, aging and death (with an immortal DNA), or is it better to downgrade this model and favour a new process of somatic survival and improved development in the same individual who would be able to live much longer? The force of evolution in a modern technological, information-laden niche may eventually favour the latter.
Also see here: http://hplusmagazine.com/2012/12/06/the-longevity-of-real-human-avatars/
LongeCity has been doing advocacy and research for indefinite life extension since 2002. With the Methuselah Foundation and the M-Prize’s rise in prominence and public popularity over the past few years, it is sometimes easy to forget the smaller-scale research initiatives implemented by other organizations.
LongeCity seeks to conquer the involuntary blight of death through advocacy and research. They award small grants to promising small-scale research initiatives focused on longevity. The time to be doing this is now, with the increasing popularity and public awareness of Citizen Science growing. The 2020 H+ Conference’s theme was The Rise of the Citizen Scientist. Open –Source and Bottom-Up organization have been hallmarks of the H+ and TechProg communities for a while now, and the rise of citizen science parallels this trend.
Anyone can have a great idea, and there are many low-hanging fruits that can provide immense value and reward to the field of life extension without necessitating large-scale research initiatives, expensive and highly-trained staff or costly laboratory equipment. These low-hanging fruit can provide just as much benefit as large scale ones – and, indeed, even have the potential to provide more benefit per unit of funding than large-scale ones. They don’t call them low-hanging fruit for nothing – they are, after all, potentially quite fruitful.
In the past LongeCity has raised funding by matching donations made by the community to fund a research project that used lasers to ablate (i.e. remove) cellular lipofuscin. LongeCity raised $8,000 dollars by the community which was then matched by up to $16,000 by SENS Founation. A video describing the process can be found here. In the end they raised over $18,000 towards this research! Recall that one of Aubrey’s strategies of SENS is to remove cellular lipofuscin via genetically engineered bacteria. Another small-scale research project funded by LongeCity involved mitochondrial uncoupling in nematodes. To see more about this research success, see here.
LongeCity’s 3rd success was their project on Microglia Stem Cells in 2010. The full proposal can be found here, and more information on this second successful LongeCity research initiative can be found here.
These are real projects with real benefits that LongeCity is funding. Even if you’re not a research scientist, you can have an impact on the righteous plight to end the involuntary blight of death, by applying for a small-scale research grant from LongeCity. What have you got to lose? Really? Because it seems to me that you have just about everything to gain.
LongeCity has also contributed toward larger scale research and development initiatives in the past as well. They have sponsored projects by Alcor, SENS Foundation and Methuselah Foundation. They crowdsourced a longevity-targeted multivitamin supplement called VIMMORTAL based on bottom-up-style community suggestion and deliberation (one of the main benefits of crowdsourcing).
So? Are you interested in impacting the movement toward indefinite life extension? Then please take a look at the various types of projects listed below that LongeCity might be interested in funding.
— — — — — — — — —
The following types of projects can be supported:
• Science support: contribution to a scientific experiment that can be carried out in a short period of time with limited resources. The experiment should be distinguishable from the research that is already funded by other sources. This could be a side-experiment in an existing programme, a pilot experiment to establish feasibility, or resources for an undergrad or high-school student.
• Chapters support: organizing a local meeting with other LongeCity members or potential members. LongeCity could contribute to the room hire, the expenses of inviting a guest speaker or even the bar tab.
• Travel support: attendance at conferences, science fairs etc. where you are presenting on a topic relevant to LongeCity. Generally this will involve some promotion of the mission and/or a report on the then conference to be shared with our Members
• Grant writing:
Bring together a team of scientists and help them write a successful grant application to a public or private funding body. Depending on the project, the award will be a success premium or sometimes can cover the costs of grant preparation itself.
• Micro matching fundraiser:
If you manage to raise funds on a mission-relevant topic, LongeCity will match the funds raised. (In order to initiate one of these initiatives LongeCity usually also requires that the fundraiser spends at least 500 ‘ThankYou points’ but this requirement can be waived in specific circumstances.)
• Outreach:
Support for a specific initiative raising public awareness of the mission or of a topic relevant to our mission. This could be a local event, a specific, organized direct marketing initiative or a media feature.
• Articles:
Write a featured article for the LongeCity website on a topic of interest to our members or visitors. LongeCity is mainly looking for articles on scientific topics, but well-researched contributions on a relevant topic in policy, law, or philosophy are also welcome.
Grant Size:
‘micro grants’ — up to $180
‘small grants’ — up to $500
Grant applications exceeding $500 can be received, but will not be evaluated conclusively under the small grants scheme. Instead, LongeCity will review the application as draft and may invite a full application afterward.
Decisions as part of the small grants programme are usually pretty quick and straightforward. However please contact LongeCity with a proposal ahead of time, as they will not normally consider applications where the money has already been spent!
Proposals can be as short or elaborate as necessary, but normally should be about half a page long.
Only LongeCity Members can apply, but any Member is free to apply on behalf of someone else — thus, non-Members are welcome to find a Member to ‘sponsor’ their application.
You can also use the ideas forum to prepare the proposal. For general questions, or to discuss the proposal informally, feel free to contact LongeCity at the above email.
If we approach the subject from a non theist point of view, what we have is a re-boot. A restore of a previously working “system image”. Can we restore a person to the last known working state prior to system failure?
As our Biological (analog) life get’s more entwined with the Digital world we have created, chances are, there might be options worth exploring. It all comes down to “Sampling” — taking snapshots of our analog lives and storing them digitally. Today, with reasonable precision we can sample, store and re-create most of our primary senses, digitally. Sight via cameras, sound via microphones, touch via haptics and even scents can be sampled and/or synthesized with remarkable accuracy.
Life as Routines, Sub-routines and Libraries:
In the story “Memories with Maya”, Krish the AI researcher put forward in simple language, some of his theories to the main character, Dan:
“Humans are creatures of habit,” he said. “We live our lives following the same routine day after day. We do the things we do with one primary motivation–comfort.” “That’s not entirely true,” I said. “What about random acts. Haven’t you done something crazy or on impulse?” “Even randomness is within a set of parameters; thresholds,” he said.
If we look at it, the average person’s week can be broken down to typical activities per day and a branch out for the weekend. The day can be further broken down into time-of-day routines. Essentially, what we have are sub-routines, routines and libraries that are run in an infinite loop, until wear and tear on mechanical parts leads to sector failures. Viruses also thrown into the mix for good measure.
Remember: we are looking at the typical lives of a good section of society — those who have resigned their minds to accepting life as it comes, satisfied in being able to afford creature comforts every once in a while. We aren’t looking at the outliers — the Einsteins, the Jobs the Mozarts. This is ironic, in that, it would be easier to back-up, restore, and resurrect the average person than it would be to do the same for outliers.
Digital Breadcrumbs — The clues we leave behind.
What exactly does social media sites mean by “What’s on your mind?” — Is it an invitation to digitize our Emotions, our thoughts, our experiences via words, pictures, sounds and videos? Every minute, Gigabytes (a conservative estimate) of analog life is being digitized and uploaded to the metaphoric “Cloud” — a rich mineral resource, ripe for data mining by “deeplearning” systems. At some point in the near future, would AI combined with technologies such as Quantum Archeology, Augmented Reality and Nano-tech, allow us to run our brains (minds?) on a substrate independent platform?
If that proposition turns your geek on, here’s some ways that you can live out a modern day version of Hansel and Gretel, insuring you find your way home, by leaving as many digital bread crumbs as you can via:
Mind Files — Terasem and Lifenaut:
What is the LifeNaut Project?
The long-term goal is to test whether given a comprehensive database, saturated with the most relevant aspects of an individual’s personality, future intelligent software will be able to replicate an individual’s consciousness. So, perhaps in the next 20 or 30 years technology will be developed to upload these files, together with futuristic software into a body of some sort – perhaps cellular, perhaps holographic, perhaps robotic. LifeNaut.com is funded by the Terasem Movement Foundation, Inc.
The LifeNaut Project is organized as a research experiment designed to test these hypotheses:
(1) a conscious analog of a person may be created by combining sufficiently detailed data about the person (“mindfile & biofile”) using future consciousness software (“mindware”), and
(2) such a conscious analog may be downloaded into a biological or nanotechnological body to provide life experiences comparable to those of a typically birthed human.
Read about Voice Banking, Speech Reconstruction and how natural human voice can be preserved and re-constructed. Voice banking might help even in cases when there is no BSOD scenario involved.
Roger Ebert, noted film critic got his “natural” voice back, using such technology.
Without us even knowing it, we are Transhumans at heart. Owners of the gaming console Xbox and the Kinect, have at their disposal, hardware that until just a couple of years ago, was only within reach of large corporations and Hollywood studios. Motion Capture, Laser scanning, full body 3D models and performance capture was not accessible to lay-people.
Today, this technology can contribute toward backup and Digital resurrection. A performance capture session can encode digitally, the essence of a persons gait, the way they walk, pout, and express themselves — A person’s unique Digital Signature. The next video shows this.
“It was easy to create a frame for him, Dan,” he said. “In the time that the cancer was eating away at him, the day’s routine became more predictable.
At first he would still go to work, then come home and spend time with us. Then he couldn’t go anymore and he was at home all day.
I knew his routine so well it took me 15 minutes to feed it in. There was no need for any random branches.”
A performance capture file, could also be stored as part of a MindFile. LifeNaut and other cryonic service providers could benefit from such invaluable data when re-booting a person.
“And sometimes when we touch”:
Perhaps one of the most difficult of our senses to recreate, is that of touch. Science is already making giant strides in this area, and looking at it from a more human perspective, touch is one of the more direct and cherished sensations that defines humanity. Touch can convey emotion.
…That’s the point of this kind of technology – giving people their humanity back. You could argue that a person is no less of a human after losing a limb, but those who suffer through it would likely tell you that there is a feeling of loss. Getting that back may be physically gratifying, but it’s probably even more psychologically gratifying… — Nigel Ackland- on his bebionic arm.
If a person’s unique “touch” signature can be digitized, every nuance can be forever preserved…both for the benefit of the owner of the file, and to their loved ones, experiencing and remembering shared intimate moments.
The aim of this short essay is not to delve into philosophy, yet on some level it is un-avoidable when talking about Transhumanism. An important goal of this movement is the use of technology for the enhancement, uplifting and perhaps…the transcendence of the shortcomings of the human condition. Technology in general seems to be keeping pace and is in sync with both Moore’s law and Kurzweil’s law and his predictions.
Yet, there is an emerging strain of Transhumanists — propelled by radical ideology, and if left un-questioned might raise the specter of Eugenics, wreaking havoc and potentially inviting retaliation from the masses. The outcome being, the stymieing human transcendence. One can only hope that along with physical augmentation technology and advances in bio-tech, Eugenics will be a thing of the past.
Soon enough, at least IQ Augmentation technology will be within reach (cost-wise) of the common man — in the form of an on-demand, non-invasive, memory and intelligence augmentation device. So… will Google Glass or similar Intelligence Augmentation device, forever banish the argument for “intellectual” Eugenics? Read an article on 4 ways that Google glass makes us Transhuman.
The following passage from the novel “Memories with Maya” is relevant to that essay.
He took a file out and opened it in front of us. Each paper was watermarked ‘Classified’.
“This is a proposal to regulate and govern the ownership of Dirrogates,” he said.
Krish and I looked at each other, and then we were listening.
“I see it, and I’m sure you both do as well, the immense opportunity there is in licensing Dirrogates to work overseas right at clients’ premises. BPO two point zero like you’ve never seen,” he said. “Our country is a huge business outsourcing destination. Why not have actual Dirrogates working at the client’s facility where they can communicate with other human staff. — Memories with Maya
A little explanation: Dirrogates are Digital Surrogates in the novel. An avatar of a real person, driven by markerless performance capture hardware such as a Kinect-like depth camera. Full skeletal and facial tracking animates a person’s Digital Surrogate and the Dirrogate can be seen by a human wearing Augmented Reality visors. Thus a human (the Dirrogate operator) is able to “tele-travel” to any location on Earth, given its exact geo-coordinates.
At the chosen destination, another depth cam streams a live, real-time 3D model of the room/location so the Dirrogate (operator) can “see” live humans overlaid with a 3D mesh of themselves and a fitted video draped texture map. In essence — a live person cloaked in a Computer generated mesh created in real-time by the depth camera… idea-seeding for Kinect 2 hackers.
What would a Dirrogate look like in the real-world? The video below, is a crude (non photo-realistic) Dirrogate entering the real world.
Dirrogates, Immigration and Pseudo Minduploads:
This brings up the question: If we can have Digital Surrogates, or indeed, pseudo mind-uploads taking on 3D printed mechanical-surrogate bodies, what is the future for physical borders and Immigration policies?
Which brings us to a related point: Does one need a visa to visit the United States of America to “work”?
As an analogy, consider the pseudo mind-upload in the video below.
Does it matter if the boy is in the same town that the school is in or if he were in another country? Now consider the case of a customer service executive, or an immigrant from a third world country using a pseudo mind-upload to Tele-Travel to his work place in down-town New York — to “drive” a Google Taxi Cab until such a time that driverless car AI is perfected.
In this essay I argue that technologies and techniques used and developed in the fields of Synthetic Ion Channels and Ion Channel Reconstitution, which have emerged from the fields of supramolecular chemistry and bio-organic chemistry throughout the past 4 decades, can be applied towards the purpose of gradual cellular (and particularly neuronal) replacement to create a new interdisciplinary field that applies such techniques and technologies towards the goal of the indefinite functional restoration of cellular mechanisms and systems, as opposed to their current proposed use of aiding in the elucidation of cellular mechanisms and their underlying principles, and as biosensors.
In earlier essays (see here and here) I identified approaches to the synthesis of non-biological functional equivalents of neuronal components (i.e. ion-channels ion-pumps and membrane sections) and their sectional integration with the existing biological neuron — a sort of “physical” emulation if you will. It has only recently come to my attention that there is an existing field emerging from supramolecular and bio-organic chemistry centered around the design, synthesis, and incorporation/integration of both synthetic/artificial ion channels and artificial bilipid membranes (i.e. lipid bilayer). The potential uses for such channels commonly listed in the literature have nothing to do with life-extension however, and the field is to my knowledge yet to envision the use of replacing our existing neuronal components as they degrade (or before they are able to), rather seeing such uses as aiding in the elucidation of cellular operations and mechanisms and as biosensors. I argue here that the very technologies and techniques that constitute the field (Synthetic Ion-Channels & Ion-Channel/Membrane Reconstitution) can be used towards the purpose of the indefinite-longevity and life-extension through the iterative replacement of cellular constituents (particularly the components comprising our neurons – ion-channels, ion-pumps, sections of bi-lipid membrane, etc.) so as to negate the molecular degradation they would have otherwise eventually undergone.
While I envisioned an electro-mechanical-systems approach in my earlier essays, the field of Synthetic Ion-Channels from the start in the early 70’s applied a molecular approach to the problem of designing molecular systems that produce certain functions according to their chemical composition or structure. Note that this approach corresponds to (or can be categorized under) the passive-physicalist sub-approach of the physicalist-functionalist approach (the broad approach overlying all varieties of physically-embodied, “prosthetic” neuronal functional replication) identified in an earlier essay.
The field of synthetic ion channels is also referred to as ion-channel reconstitution, which designates “the solubilization of the membrane, the isolation of the channel protein from the other membrane constituents and the reintroduction of that protein into some form of artificial membrane system that facilitates the measurement of channel function,” and more broadly denotes “the [general] study of ion channel function and can be used to describe the incorporation of intact membrane vesicles, including the protein of interest, into artificial membrane systems that allow the properties of the channel to be investigated” [1]. The field has been active since the 1970s, with experimental successes in the incorporation of functioning synthetic ion channels into biological bilipid membranes and artificial membranes dissimilar in molecular composition and structure to biological analogues underlying supramolecular interactions, ion selectivity and permeability throughout the 1980’s, 1990’s and 2000’s. The relevant literature suggests that their proposed use has thus far been limited to the elucidation of ion-channel function and operation, the investigation of their functional and biophysical properties, and in lesser degree for the purpose of “in-vitro sensing devices to detect the presence of physiologically-active substances including antiseptics, antibiotics, neurotransmitters, and others” through the “… transduction of bioelectrical and biochemical events into measurable electrical signals” [2].
Thus my proposal of gradually integrating artificial ion-channels and/or artificial membrane sections for the purpse of indefinite longevity (that is, their use in replacing existing biological neurons towards the aim of gradual substrate replacement, or indeed even in the alternative use of constructing artificial neurons to, rather than replace existing biological neurons, become integrated with existing biological neural networks towards the aim of intelligence amplification and augmentation while assuming functional and experiential continuity with our existing biological nervous system) appears to be novel, while the notion of artificial ion-channels and neuronal membrane systems ion general had already been conceived (and successfully created/experimentally-verified, though presumably not integrated in-vivo).
The field of Functionally-Restorative Medicine (and the orphan sub-field of whole-brain-gradual-substrate-replacement, or “physically-embodied” brain-emulation if you like) can take advantage of the decades of experimental progress in this field, incorporating both the technological and methodological infrastructures used in and underlying the field of Ion-Channel Reconstitution and Synthetic/Artificial Ion Channels & Membrane-Systems (and the technologies and methodologies underlying their corresponding experimental-verification and incorporation techniques) for the purpose of indefinite functional restoration via the gradual and iterative replacement of neuronal components (including sections of bilipid membrane, ion channels and ion pumps) by MEMS (micro-electrocal-mechanical-systems) or more likely NEMS (nano-electro-mechanical systems).
The technological and methodological infrastructure underlying this field can be utilized for both the creation of artificial neurons and for the artificial synthesis of normative biological neurons. Much work in the field required artificially synthesizing cellular components (e.g. bilipid membranes) with structural and functional properties as similar to normative biological cells as possible, so that the alternative designs (i.e. dissimilar to the normal structural and functional modalities of biological cells or cellular components) and how they affect and elucidate cellular properties, could be effectively tested. The iterative replacement of either single neurons, or the sectional replacement of neurons with synthesized cellular components (including sections of the bi-lipid membrane, voltage-dependent ion-channels, ligand-dependent ion channels, ion pumps, etc.) is made possible by the large body of work already done in the field. Consequently the technological, methodological and experimental infrastructures developed for the fields of Synthetic
Ion-Channels and Ion-Channel/Artificial-Membrane-Reconstitution can be utilized for the purpose of a.) iterative replacement and cellular upkeep via biological analogues (or not differing significantly in structure or functional & operational modality to their normal biological counterparts) and/or b.) iterative replacement with non-biological analogues of alternate structural and/or functional modalities.
Rather than sensing when a given component degrades and then replacing it with an artificially-synthesized biological or non-biological analogue, it appears to be much more efficient to determine the projected time it takes for a given component to degrade or otherwise lose functionality, and simply automate the iterative replacement in this fashion, without providing in-vivo systems for detecting molecular or structural degradation. This would allow us to achieve both experimental and pragmatic success in such cellular-prosthesis sooner, because it doesn’t rely on the complex technological and methodological infrastructure underlying in-vivo sensing, especially on the scale of single neuron components like ion-channels, and without causing operational or functional distortion to the components being sensed.
A survey of progress in the field [3] lists several broad design motifs. I will first list the deign motifs falling within the scope of the survey, and the examples it provides. Selections from both papers are meant to show the depth and breadth of the field, rather than to elucidate the specific chemical or kinetic operations under the purview of each design-variety.
For a much more comprehensive, interactive bibliography of papers falling within the field of Synthetic Ion-Channels or constituting the historical foundations of the field, see Jon Chui’s online biography here, which charts the developments in this field up until 2011.
First Survey
Unimolecular ion channels:
Examples include a.) synthetic ion channels with oligocrown ionophores, [5] b.) using a-helical peptide scaffolds and rigid push–pull p-octiphenyl scaffolds for the recognition of polarized membranes, [6] and c.) modified varieties of the b-helical scaffold of gramicidin A [7]
Barrel-stave supramolecules:
Examples of this general class falling include avoltage-gated synthetic ion channels formed by macrocyclic bolaamphiphiles and rigidrod p-octiphenyl polyols [8].
Macrocyclic, branched and linear non-peptide bolaamphiphiles as staves:
Examples of this sub-class include synthetic ion channels formed by a.) macrocyclic, branched and linear bolaamphiphiles and dimeric steroids, [9] and by b.) non-peptide macrocycles, acyclic analogs and peptide macrocycles [respectively] containing abiotic amino acids [10].
Dimeric steroid staves:
Examples of this sub-class include channels using polydroxylated norcholentriol dimer [11].
pOligophenyls as staves in rigid rod b barrels:
Examples of this sub-class include “cylindrical self-assembly of rigid-rod b-barrel pores preorganized by the nonplanarity of p-octiphenyl staves in octapeptide-p-octiphenyl monomers” [12].
Synthetic Polymers:
Examples of this sub-class include synthetic ion channels and pores comprised of a.) polyalanine, b.) polyisocyanates, c.) polyacrylates, [13] formed by i.) ionophoric, ii.) ‘smart’ and iii.) cationic polymers [14]; d.) surface-attached poly(vinyl-n-alkylpyridinium) [15]; e.) cationic oligo-polymers [16] and f.) poly(m-phenylene ethylenes) [17].
Helical b-peptides (used as staves in barrel-stave method):
Examples of this class include: a.) cationic b-peptides with antibiotic activity, presumably acting as amphiphilic helices that form micellar pores in anionic bilayer membranes [18].
Monomeric steroids:
Examples of this sub-class falling include synthetic carriers, channels and pores formed by monomeric steroids [19], synthetic cationic steroid antibiotics [that] may act by forming micellar pores in anionic membranes [20], neutral steroids as anion carriers [21] and supramolecular ion channels [22].
Complex minimalist systems:
Examples of this sub-class falling within the scope of this survey include ‘minimalist’ amphiphiles as synthetic ion channels and pores [23], membrane-active ‘smart’ double-chain amphiphiles, expected to form ‘micellar pores’ or self-assemble into ion channels in response to acid or light [24], and double-chain amphiphiles that may form ‘micellar pores’ at the boundary between photopolymerized and host bilayer domains and representative peptide conjugates that may self assemble into supramolecular pores or exhibit antibiotic activity [25].
Non-peptide macrocycles as hoops:
Examples of this sub-class falling within the scope of this survey include synthetic ion channels formed by non-peptide macrocycles acyclic analogs [26] and peptide macrocycles containing abiotic amino acids [27].
Peptide macrocycles as hoops and staves:
Examples of this sub-class include a.) synthetic ion channels formed by self-assembly of macrocyclic peptides into genuine barrel-hoop motifs that mimic the b-helix of gramicidin A with cyclic b-sheets. The macrocycles are designed to bind on top of channels and cationic antibiotics (and several analogs) are proposed to form micellar pores in anionic membranes [28]; b.) synthetic carriers, antibiotics (and analogs) and pores (and analogs) formed by macrocyclic peptides with non-natural subunits. [Certain] macrocycles may act as b-sheets, possibly as staves of b-barrel-like pores [29]; c.) bioengineered pores as sensors. Covalent capturing and fragmentations [have been] observed on the single-molecule level within engineered a-hemolysin pore containing an internal reactive thiol [30].
Summary
Thus even without knowledge of supramolecular or organic chemistry, one can see that a variety of alternate approaches to the creation of synthetic ion channels, and several sub-approaches within each larger ‘design motif’ or broad-approach, not only exist but have been experimentally verified, varietized and refined.
Second Survey
The following selections [31] illustrate the chemical, structural and functional varieties of synthetic ions categorized according to whether they are cation-conducting or anion-conducting, respectively. These examples are used to further emphasize the extent of the field, and the number of alternative approaches to synthetic ion-channel design, implementation, integration and experimental-verification already existent. Permission to use all the following selections and figures were obtained from the author of the source.
There are 6 classical design-motifs for synthetic ion-channels, categorized by structure, that are identified within the paper:
“The first non-peptidic artificial ion channel was reported by Kobuke et al. in 1992” [33].
“The channel contained “an amphiphilic ion pair consisting of oligoether-carboxylates and mono- (or di-) octadecylammoniumcations. The carboxylates formed the channel core and the cations formed the hydrophobic outer wall, which was embedded in the bilipid membrane with a channel length of about 24 to 30 Å. The resultant ion channel, formed from molecular self-assembly, is cation selective and voltage-dependent” [34].
“Later, Kokube et al. synthesized another channel comprising of resorcinol based cyclic tetramer as the building block. The resorcin-[4]-arenemonomer consisted of four long alkyl chains which aggregated to forma dimeric supramolecular structure resembling that of Gramicidin A” [35]. “Gokel et al. had studied [a set of] simple yet fully functional ion channels known as “hydraphiles” [39].
“An example (channel 3) is shown in Figure 1.6, consisting of diaza-18-crown-6 crown ether groups and alkyl chain as side arms and spacers. Channel 3 is capable of transporting protons across the bilayer membrane” [40].
“A covalently bonded macrotetracycle4 (Figure 1.8) had shown to be about three times more active than Gokel’s ‘hydraphile’ channel, and its amide-containing analogue also showed enhanced activity” [44].
“Inorganic derivative using crown ethers have also been synthesized. Hall et. al synthesized an ion channel consisting of a ferrocene and 4 diaza-18-crown-6 linked by 2 dodecyl chains (Figure 1.9). The ion channel was redox-active as oxidation of the ferrocene caused the compound to switch to an inactive form” [45]
B STAVES:
“These are more difficult to synthesize [in comparison to unimolecular varieties] because the channel formation usually involves self-assembly via non-covalent interactions” [47].“A cyclic peptide composed of even number of alternating D- and L-amino acids (Figure 1.10) was suggested to form barrel-hoop structure through backbone-backbone hydrogen bonds by De Santis” [49].
“A tubular nanotube synthesized by Ghadiri et al. consisting of cyclic D and L peptide subunits form a flat, ring-shaped conformation that stack through an extensive anti-parallel β-sheet-like hydrogen bonding interaction (Figure 1.11)” [51].
“Experimental results have shown that the channel can transport sodium and potassium ions. The channel can also be constructed by the use of direct covalent bonding between the sheets so as to increase the thermodynamic and kinetic stability” [52].
“By attaching peptides to the octiphenyl scaffold, a β-barrel can be formed via self-assembly through the formation of β-sheet structures between the peptide chains (Figure 1.13)” [53].
“The same scaffold was used by Matile etal. to mimic the structure of macrolide antibiotic amphotericin B. The channel synthesized was shown to transport cations across the membrane” [54].
“Attaching the electron-poor naphthalenediimide (NDIs) to the same octiphenyl scaffold led to the hoop-stave mismatch during self-assembly that results in a twisted and closed channel conformation (Figure 1.14). Adding the compleentary dialkoxynaphthalene (DAN) donor led to the cooperative interactions between NDI and DAN that favors the formation of barrel-stave ion channel.” [57].
MICELLAR
“These aggregate channels are formed by amphotericin involving both sterols and antibiotics arranged in two half-channel sections within the membrane” [58].
“An active form of the compound is the bolaamphiphiles (two-headed amphiphiles). (Figure 1.15) shows an example that forms an active channel structure through dimerization or trimerization within the bilayer membrane. Electrochemical studies had shown that the monomer is inactive and the active form involves dimer or larger aggregates” [60].
ANION CONDUCTING CHANNELS:
“A highly active, anion selective, monomeric cyclodextrin-based ion channel was designed by Madhavan et al (Figure 1.16). Oligoether chains were attached to the primary face of the β-cyclodextrin head group via amide bonds. The hydrophobic oligoether chains were chosen because they are long enough to span the entire lipid bilayer. The channel was able to select “anions over cations” and “discriminate among halide anions in the order I-> Br-> Cl- (following Hofmeister series)” [61].
“The anion selectivity occurred via the ring of ammonium cations being positioned just beside the cyclodextrin head group, which helped to facilitate anion selectivity. Iodide ions were transported the fastest because the activation barrier to enter the hydrophobic channel core is lower for I- compared to either Br- or Cl-“ [62]. “A more specific artificial anion selective ion channel was the chloride selective ion channel synthesized by Gokel. The building block involved a heptapeptide with Proline incorporated (Figure 1.17)” [63].
Cellular Prosthesis: Inklings of a New Interdisciplinary Approach
The paper cites “nanoreactors for catalysis and chemical or biological sensors” and “interdisciplinary uses as nano –filtration membrane, drug or gene delivery vehicles/transporters as well as channel-based antibiotics that may kill bacterial cells preferentially over mammalian cells” as some of the main applications of synthetic ion-channels [65], other than their normative use in elucidating cellular function and operation.
However, I argue that a whole interdisciplinary field and heretofore-unrecognized new approach or sub-field of Functionally-Restorative Medicine is possible through taking the technologies and techniques involved in in constructing, integrating, and experimentally-verifying either a.) non-biological analogues of ion-channels & ion-pumps (thus trans-membrane membrane proteins in general, also sometimes referred to as transport proteins or integral membrane proteins) and membranes (which include normative bilipid membranes, non-lipid membranes and chemically-augmented bilipid membranes), and b.) the artificial synthesis of biological analogues of ion-channels, ion-pumps and membranes, which are structurally and chemically equivalent to naturally-occurring biological components but which are synthesized artificially – and applying such technologies and techniques toward the purpose the gradual replacement of our existing biological neurons constituting our nervous systems – or at least those neuron-populations that comprise the neo- and prefrontal-cortex, and through iterative procedures of gradual replacement thereby achieving indefinite-longevity. There is still work to be done in determining the comparative advantages and disadvantages of various structural and functional (i.e. design) motifs, and in the logistics of implanting the iterative replacement or reconstitution of ion-channels, ion-pumps and sections of neuronal membrane in-vivo.
The conceptual schemes outlined in Concepts for Functional Replication of Biological Neurons [66], Gradual Neuron Replacement for the Preservation of Subjective-Continuity [67] and Wireless Synapses, Artificial Plasticity, and Neuromodulation [68] would constitute variations on the basic approach underlying this proposed, embryonic interdisciplinary field. Certain approaches within the fields of nanomedicine itself, particularly those approaches that constitute the functional emulation of existing cell-types, such as but not limited to Robert Freitas’s conceptual designs for the functional emulation of the red blood cell (a.k.a. erythrocytes, haematids) [69], i.e. the Resperocyte, itself should be seen as falling under the purview of this new approach, although not all approaches to Nanomedicine (diagnostics, drug-delivery and neuroelectronic interfacing) constitute the physical (i.e. electromechanical, kinetic and/or molecular physically-embodied) and functional emulation of biological cells.
The field of functionally-restorative medicine in general (and of nanomedicine in particular) and the field of supramolecular and organic chemistry converge here, where these technological, methodological, and experimental infrastructures developed in field of Synthetic Ion-Channels and Ion Channel Reconstitution can be employed to develop a new interdisciplinary approach that applies the logic of prosthesis to the cellular and cellular-component (i.e. sub-cellular) scale; same tools, new use. These techniques could be used to iteratively replace the components of our neurons as they degrade, or to replace them with more robust systems that are less susceptible to molecular degradation. Instead of repairing the cellular DNA, RNA and protein transcription and synthesis machinery, we bypass it completely by configuring and integrating the neuronal components (ion-channels, ion-pumps and sections of bilipid membrane) directly.
Thus I suggest that theoreticians of nanomedicine look to the large quantity of literature already developed in the emerging fields of synthetic ion-channels and membrane-reconstitution, towards the objective of adapting and applying existing technologies and methodologies to the new purpose of iterative maintenance, upkeep and/or replacement of cellular (and particularly neuronal) constituents with either non-biological analogues or artificially-synthesized-but-chemically/structurally-equivalent biological analogues.
This new sub-field of Synthetic Biology needs a name to differentiate it from the other approaches to Functionally-Restorative Medicine. I suggest the designation ‘cellular prosthesis’.
References:
[1] Williams (1994)., An introduction to the methods available for ion channel reconstitution. in D.C Ogden Microelectrode techniques, The Plymouth workshop edition, CambridgeCompany of Biologists.
[2] Tomich, J., Montal, M. (1996). U.S Patent No. 5,16,890. Washington, DC: U.S. Patent and Trademark Office.
[3] Matile, S., Som, A., & Sorde, N. (2004). Recent synthetic ion channels and pores. Tetrahedron, 60(31), 6405-6435. ISSN 0040-4020, 10.1016/j.tet.2004.05.052. Access: http://www.sciencedirect.com/science/article/pii/S0040402004007690:
[4] XIAO, F., (2009). Synthesis and structural investigations of pyridine-based aromatic foldamers.
[5] Ibid., p. 6411.
[6] Ibid., p. 6416.
[7] Ibid., p. 6413.
[8] Ibid., p. 6412.
[9] Ibid., p. 6414.
[10] Ibid., p. 6425.
[11] Ibid., p. 6427.
[12] Ibid., p. 6416.
[13] Ibid., p. 6419.
[14] Ibid., p. 6419.
[15] Ibid., p. 6419.
[16] Ibid., p. 6419.
[17] Ibid., p. 6419.
[18] Ibid., p. 6421.
[19] Ibid., p. 6422.
[20] Ibid., p. 6422.
[21] Ibid., p. 6422.
[22] Ibid., p. 6422.
[23] Ibid., p. 6423.
[24] Ibid., p. 6423.
[25] Ibid., p. 6423.
[26] Ibid., p. 6426.
[27] Ibid., p. 6426.
[28] Ibid., p. 6427.
[29] Ibid., p. 6327.
[30] Ibid., p. 6427.
[31] XIAO, F. (2009). Synthesis and structural investigations of pyridine-based aromatic foldamers.
[69] Freitas Jr., R., (1998). “Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell”. Artificial Cells, Blood Substitutes, and Immobil. Biotech. (26): 411–430. Access: http://www.ncbi.nlm.nih.gov/pubmed/9663339
1) CERN officially attempted to produce ultraslow miniature black holes on earth. It has announced to continue doing so after the current more than a year-long break for upgrading.
2) Miniature black holes possess radically new properties according to published scientific results that go unchallenged in the literature for 5 years: no Hawking evaporation; unchargedness; invisibility to CERN’s detectors; enhanced chance of being produced.
3) Of the millions of miniature black holes hoped to have been produced, at least one is bound to be slow enough to stay inside earth to circulate there.
4) This miniature black hole circulates undisturbed – until it captures the first charged quark. From then on it grows exponentially doubling in size in months at first, later in weeks.
5) As a consequence, after about 100 doublings, earth will start showing manifest signs of “cancer.” And she will – after first losing her atmosphere – die within months to leave nothing but a 2-cm black hole in her wake that still keeps the moon on its course.
6) CERN’s roundabout-way safety argument of 2008, invoking the observed longevity of neutron stars as a guarantee for earth, got falsified on the basis of quantum mechanics in a paper published in mid-2008.
7) CERN’s second roundabout-way safety argument of 2008, invoking the observed longevity of white dwarf stars as a guarantee for earth, likewise got falsified in scientific papers the first of which was published in mid-2008. CERN overlooked the enlarged-cross section principle valid for ultra-slow artificial, compared to ultrafast natural, miniature black holes. The same effect is frighteningly familiar from the slow “cold” neutrons in nuclear fission.
In summary, seven coincidences of “bad luck” were found to cooperate like Macbeth’s fateful 3 witches. CERN decided to accept the blemish of not up-dating its safety report for 5 years so far. Also it steadfastly refuses the safety conference publicly requested on the web on April 18, 2008 (“Honey, I shrunk the earth”). Most significantly, CERN up to this day refuses to heed a Cologne Court’s advice, handed-out to CERN’s representatives standing before it on January the 27th of 2011, to hold a “safety conference.”
Unless there is a safety guarantee that CERN keeps a secret from the whole world while mentioning it only behind closed doors to bring the World Press Council and the UN Security Council to refrain from doing their otherwise inalienable duty, the above-sketched scenario has no parallel in history.
Not a single scientific publication world-wide claims to falsify one of the above-sketched results (points 2–7). Only a very charismatic scientist may be able to call back the media and the mighty behind closed doors. I have a hunch who this could be. But I challenge him to no longer hide so the world can see to whom she owes her hopefully beneficial fate.
Has there ever been a more unsettling story kept from the citizens of this planet?
UPDATE: A generous contribution of $5,000 from the Methuselah Foundation has been received! This will put the fundraiser over the top of the cost and pay for the advanced Champions Oncology treatment described below.
However, Dr. Coles still has other medical expenses outstanding, and more will be coming in.
To cover these as well as Dr. Coles’s many other personal expenses, the fundraiser will now have an extended timeframe and the limit has been raised to $20,000.
We are currently at $13,385 of our 20,000 goal! Help us make it all the way!
Your contribution would help Dr. Coles continue his contributions and be greatly appreciated.
*** PLEASE alert your friends. L Stephen Coles spend his entire professional career trying to save your life; take a second to help save his.***
Stephen Coles is one of the heroes of our time, who has contributed immensely to the prospects for longevity for all of us. I am honored to be able to assist him in his own struggle against a life-threatening illness, so that he could have decades and centuries more to fight the most dangerous, the most destructive enemies of senescence and death.Anonymous
Anonymous
donated$50.00
Tuesday, June 04, 2013
marshall zablen
donated$300.00
Tuesday, June 04, 2013
Anonymous
donated$200.00
Tuesday, June 04, 2013
Anonymous
donated$200.00
Tuesday, June 04, 2013
Björn Kleinert
donated$50.00
Tuesday, June 04, 2013
Get well !
Joao Pedro Magalhaes
donated $50.00
Tuesday, June 04, 2013
Anonymous
donated Hidden Amount
Monday, June 03, 2013
Otto
donated $20.00
Monday, June 03, 2013
Anonymous
donated $20.00
Monday, June 03, 2013
Franco Cortese
donated $100.00
Monday, June 03, 2013
PLEASE donate ANYTHING you can to help save the life of L. Stephen Coles, who has spent his entire professional career trying to save yours!
Aubrey de Grey
donated$300.00
Monday, June 03, 2013
Anonymous
Offline Donation
donated$5,000.00
Monday, June 03, 2013
RetirementSingularity.com
donated Hidden Amount
Monday, June 03, 2013
Anonymous
donated Hidden Amount
Monday, June 03, 2013
Sven Bulterijs
donated $15.00
Monday, June 03, 2013
Anonymous
donated Hidden Amount
Sunday, June 02, 2013
kg goldberger
donated$20.00
Sunday, June 02, 2013
prayers are on the way for more than 65% of deaths. Aging is a cause of adult cancer, stroke and many others age related diseases. Researchers fighting aging are the best people, they are fighting for all of us. Let’s pay them back!
Bijan Pourat MD
donated$250.00
Saturday, June 01, 2013
Maxim Kholin
donated Hidden Amount
Saturday, June 01, 2013
Aging is a disease. Aging is responsible
Anonymous
donated $60.00
Saturday, June 01, 2013
Nils Alexander Hizukuri
donated $30.00
Saturday, June 01, 2013
All the best!
Anonymous
donated$40.00
Saturday, June 01, 2013
Danny Bobrow
donated Hidden Amount
Saturday, June 01, 2013
Steve, win this fight for us all. I send you healing thoughts.
Danny
Steve, friends and family, but it is an outstanding, real-world example of the advancing frontier of science and medicine. The entire life-extension community should rally in support of this effort for Steve and for the acquisition of important scientific knowledge.
Cliff Hague
donated $100.00
Saturday, June 01, 2013
Best wishes for a speedy recovery.
Tom Coote
donated $100.00
Friday, May 31, 2013
With Best Wishes!
Anonymous
donated $100.00
Friday, May 31, 2013
Allen Taylor
donated$25.00
Friday, May 31, 2013
Gunther Kletetschka
donated Hidden Amount
Friday, May 31, 2013
john mccormack, Australia
donated $50.00
Friday, May 31, 2013
phil kernan
donated $100.00
Friday, May 31, 2013
Gary and Marie Livick
donated $100.00
Friday, May 31, 2013
ingeseim
donated Hidden Amount
Friday, May 31, 2013
TeloMe Inc.
donated $100.00
Friday, May 31, 2013
Not only is this an important cause for
-Preston Estep, Ph.D.
CEO and Chief Scientific Officer, TeloMe, Inc.
Not only is this an important cause for Steve, friends and family, but it is an outstanding, real-world example of the advancing frontier of science and medicine. The entire life-extension community should rally in support of this effort for Steve and for the acquisition of important scientific knowledge. –Preston Estep, Ph.D. CEO and Chief Scientific Officer, TeloMe, Inc.