Toggle light / dark theme

A team led by a researcher from the University of Sydney has developed a low-cost, sustainable, and readily available technology that can dim the screens of electronic devices, anti-reflection automobile mirrors, and smart architectural windows at a fraction of the cost of current technology.

It would replace one of the world’s scarcest—yet highly ubiquitous in use—modern materials: indium. A rare chemical element, that it is widely used in devices such as smartphones and computers, windscreen glass and self-dimming windows.

Although small amounts are used to manufacture smart screens, indium is expensive as it is hard to source; it naturally occurs only in small deposits. Industrial indium is often made as a byproduct of zinc mining, which means a shortage could occur if demand for optoelectronic devices—such as LCDs and touch panels—ramps up.

The canisters can’t stay on the 11-acre storage site on Bailey Peninsula in Wiscasset forever. And the specter of climate change and ocean level rise adds urgency to the hunt for a solution.


That’s a problem because the waste — 1400 spent nuclear fuel rods housed in 60 cement and steel canisters, plus four canisters of irradiated steel removed from the nuclear reactor when it was taken down — is safe for now, but can’t stay in Wiscasset forever.

The situation in Wiscasset underscores a thorny issue facing more than 100 communities across the U.S.: close to a hundred thousand tons of nuclear waste that has no place to go.

Securing these remnants of nuclear energy generation is an ongoing task that requires armed guards around the clock and costs Maine Yankee’s owners some $10 million per year, which is being paid for with money from the government.

“Gorgon’s failure poses a major problem for any oil and gas company betting on CCS to meet net zero,” said Ian Porter, the chairperson of Sustainable Energy Now, WA. “CCS simply does not work at the scale and at the price needed.”


(Bloomberg) — The world’s biggest project to capture and store carbon dioxide isn’t working like it should, highlighting the challenges oil companies face in tackling their greenhouse gas emissions. Chevron Corp.’s system at the $54 billion Gorgon liquefied natural gas export plant in Australi…

CHINA’S NEW THORIUM-BASED NUCLEAR REACTOR is well situated for being adopted for Space applications.

China is slowly but steadily positioning itself to leap ahead of the US Space program. It is doing this without pomp and fanfare, and without the idea of a “space race,” simply based upon what it requires for its future.

1) Recent noteworthy progress on molten salt thorium reactors could be a key component of future Chinese space-worthiness. Originally designed by the USA’s Oak Ridge National Laboratory in the 1960’s, they were planned to be used for nuclear powered strategic bomber planes, before the nuclear submarine concept became adopted as more feasible. They were chosen because they can be miniaturized to the size of an aircraft. By the same token, they could conceivably be used in advanced atmospheric or space propulsion.

2) Recently, China announced successful tests on a new type of aircraft that takes in air from the surrounding atmosphere, ionizes it with electricity, and expels it as exhaust. The only thing needed would be a strong enough on-board electrical supply to supply the huge amount of power required. Only a nuclear power plant could supply that power unless it were to be beamed from ground stations. Such a plane would require no fuel for its entire lifetime. It could also function in any atmosphere, not only Earth’s atmosphere, since it is not based on burning fuel chemically, which requires oxygen. Versions of such air-plasma-breathing thrust could be used as part of the boosting phase of a rocket launch system.

3) A few days ago, China tested part of its fully reusable space plane, which is a vastly superior system to SpaceX’s “Starship” rocket. While Starship uses old-fashioned ballistic rocket technology, the Chinese spaceplane, according to reports that have come out, involves something similar to the Sanger space plane design. An early version of the Space Shuttle design also had this configuration. Instead of the Space Shuttle’s dangerous solid rocket boosters on the side, and its external fuel tank, which is dumped once the fuel is used up, such systems have a second “booster aircraft” which glides to a runway after boosting the upper stage orbiter into its atmospheric launch position. So, there are two vehicles which land on a runway, with only the orbiter going into space. In addition to this, the Chinese are adding “combined cycle” technologies, where more than one type of propulsion is being used on the aircraft. So, perhaps turbojets, and scramjets, and rocket engines will be used as one example of such a configuration.

The new molten salt reactors, part of a program developed under the leadership of former Chinese President Zemin’s son, and with collaboration from the US’s Oakridge National Laboratory, is now close to implementation stage. Such reactors could be integrated into a space plane, allowing “single-stage-to-orbit” concepts to become within reach. Such systems would not need a booster phase, but would use a combination of air-plasma-breathing and rocket engines to get to orbit with only a single vehicle, while landing like the Space Shuttle did or perhaps landing with powered flight instead of gliding without fuel as did the Shuttle.

All of this makes China’s plan for “nuclear-powered space shuttles” in the 2040’s very possible. If fusion power is obtained before then, this will all proceed even faster, and all the technical and engineering skills will be immediately brought to bear.


The thorium-powered reactors do not need water as a coolant, meaning they can be built in remote deserts alongside wind and solar power plants.

Plastic waste, a material that can take centuries or more to disappear, is causing irreparable damage to the planet. At least 8 million tons of plastic end up in the ocean each year. In many cases, specifically in more developed countries, plastic waste is disposed of responsibly and sent to facilities to be sorted, recycled, or recovered. However, plastic waste generated in developing countries typically ends up in dumps or open, uncontrolled landfills — most of which eventually enter the ocean either through transport by wind or tides or through waterways such as rivers or wastewater. Now, many companies are recycling this waste into useful products, such as sportswear, affordable homes, electric cars, roads, etc. One of them is Gjenge Makers Ltd, a sustainable, alternative, affordable building products manufacturing company that transforms plastic waste into durable building materials. These include paving blocks, paving tiles, and manhole covers.


Nzambi Matee has used her engineering skills to develop the process that involved mixing recycled waste plastic and sand. Matee gets the wasted plastic from packaging factories for free, although she pays for the plastic she gets from other recyclers. The company workers take plastic waste, mix it with sand, and heat it up, with the resulting brick being five to seven times stronger than concrete.

Matee’s team uses the type of plastic waste that can’t be processed anymore; that cannot be recycled. Since plastic is fibrous in nature, it makes the brick an extremely strong and durable material. Besides, compared with regular bricks, Gjenge Makers’ ones are lighter, so transportation and installation are achieved at faster rates.

Gjenge Makers produces between 1000 to 1500 paving bricks every day in different sizes and colors. The bricks are usually made using high-density polyethylene, used in milk and shampoo bottles; low-density polyethylene, often used for bags for cereals or sandwiches; and polypropylene, used for ropes, flip-top lids, and buckets. However, it does not use polyethylene terephthalate or PET, which are commonly used in plastic bottles.

Circa 2019


Thanks to Stanford researchers, there might be a new recipe for hydrogen fuel: saltwater, electrodes and solar power. The researchers have developed a proof-of-concept for separating hydrogen and oxygen gas from seawater via electricity. It’s far cheaper than the current methods, which rely on creating hydrogen fuel from purified water.

Breaking up a substance like water to create hydrogen and oxygen is called electrolysis and is a scientific technique centuries old. It was first codified by British scientific legend Michael Faraday, whose two laws of electrolysis from 1834 still guide scientists today. With a power source connecting to two water-based electrodes, scientists can get hydrogen bubbles to come out of an end called an cathode, while oxygen comes out of an end called an anode.

That works fine for fresh water, but saltwater is trickier because of its ability to corrode electrodes with chloride, which would limit a system’s lifespan. The trick for Hongjie Dai, a professor of chemistry at Stanford, and his team was a change in materials.

Bad news for coffee lovers. Global warming will limit our coffee consumption.


Global coffee prices are climbing and threatening to drive up costs at the breakfast table as the world’s biggest coffee producer, Brazil, faces one of its worst droughts in almost a century.

Prices for arabica coffee beans—the main variety produced in Brazil—hit their highest level since 2016 last month. New York-traded arabica futures have risen over 18% in the past three months to $1.51 a pound. London-traded robusta—a stronger-tasting variety favored in instant coffee—has risen over 30% in the past three months, to $1749 a metric ton, a two-year high.

Brazil’s farmers are girding for one of their biggest slumps in output in almost 20 years after months of drought left plants to wither. Brazil’s arabica crop cycles between one stronger year followed by a weaker year. Following a record harvest in 2020, 2021 was set to be a weaker year, but the drop is more severe than expected.

“The American Contractor Show” has shared its review of the installation of a Tesla Solar Roof. The show is a series of episodes featuring contracting and this episode took a deep dive into the Tesla Solar Roof installation process. Davide Silverstein and American Home Contractors demonstrated just what it takes to install a Tesla Solar Roof. The episode includes a step-by-step look at the installation process.

David Silverstein from American Home Contractors takes the host of the American Contractors Show, John Dye, on a walk-through of a Tesla Solar Roof installation.