A collaborative research team, led by the University of Liverpool, has discovered a new inorganic material with the lowest thermal conductivity ever reported. This discovery paves the way for the development of new thermoelectric materials that will be critical for a sustainable society.
Reported in the journal Science, this discovery represents a breakthrough in the control of heat flow at the atomic scale, achieved by materials design. It offers fundamental new insights into the management of energy. The new understanding will accelerate the development of new materials for converting waste heat to power and for the efficient use of fuels.
The research team, led by Professor Matt Rosseinsky at the University’s Department of Chemistry and Materials Innovation Factory and Dr. Jon Alaria at the University’s Department of Physics and Stephenson Institute for Renewable Energy, designed and synthesized the new material so that it combined two different arrangements of atoms that were each found to slow down the speed at which heat moves through the structure of a solid.
Elon Musk confirmed that Tesla currently has a Powerwall backlog of 80000 orders, which is worth over $500 million, but it can’t ramp up production to meet that due to the global chip shortage.
Tesla has been production constrained with the Powerwall for a long time.
The demand has been strong in several markets, like the US and Australia, but production hasn’t been to catch up despite significant ramp-ups.
We hear about EV battery breakthroughs all the time, but they don’t seem to pan out. Perhaps Tesla’s new lithium extraction method will be the exception.
Jacopo Buongiorno and others say factory-built microreactors trucked to usage sites could be a safe, efficient option for decarbonizing electricity systems.
We may be on the brink of a new paradigm for nuclear power, a group of nuclear specialists suggested recently in The Bridge, the journal of the National Academy of Engineering. Much as large, expensive, and centralized computers gave way to the widely distributed PCs of today, a new generation of relatively tiny and inexpensive factory-built reactors, designed for autonomous plug-and-play operation similar to plugging in an oversized battery, is on the horizon, they say.
These proposed systems could provide heat for industrial processes or electricity for a military base or a neighborhood, run unattended for five to 10 years, and then be trucked back to the factory for refurbishment. The authors — Jacopo Buongiorno, MIT’s TEPCO Professor of Nuclear Science and Engineering; Robert Frida, a founder of GenH; Steven Aumeier of the Idaho National Laboratory; and Kevin Chilton, retired commander of the U.S. Strategic Command — have dubbed these small power plants “nuclear batteries.” Because of their simplicity of operation, they could play a significant role in decarbonizing the world’s electricity systems to avert catastrophic climate change, the researchers say. MIT News asked Buongiorno to describe his group’s proposal.
This article is an excerpt from a report by Partners in Foresight, The Home of the 2020s: Scenarios for How We Might Live in the Post-Pandemic Future.
The homes we inhabit in the 2020s could serve as a personal headquarters for building the good society. How can a house help create a more positive future? Here are four ways the home of the future might support meaningful personal commitment to the greater good.
1. Advocate From Home (AFH)
During the pandemic lockdown period, a new wave of civic engagement has taken hold. A trend called Advocate From Home (AFH) takes the form of digital organizing (e-mail, text banking, content production) for political, ecological, social and economic justice, often using work-from-home tools.
2. Decentralized Energy
Households are embracing renewables in terms of solar energy and decentralized systems with independent home batteries. There are revolutions happening in the world of clean kinetic energy that could transform our spaces by allowing objects to collect and then transmit power. Future homes may be self-sustaining in terms of power and energy needs.
3. Biophilia
One way people express environmentalist values at home is through a love of nature. Outdoors, there are green options for the visionary homeowner, such as garden plots, low-intensive watering solutions, use of native plants and compost bins. Inside the home, people are gravitating to hydroponically grown vegetables and herbs. Indoor plants of all kinds are at the height of interior design trends and architecture is looking to biomimicry for sustainable ideas. Pets outnumber children in US homes.
4. Shrinking Footprint
In terms of actual home structure, the tiny home and 3D printed home craze are growing. A recently completed project constructed a house from recyclable coffee grounds and there is growing consumer demand for sustainable bricks and concrete. Fashion and home décor choices tend toward fair trade, recycled materials, resale, and upcycling. Mindful consumption to manage our ecological and ethical footprint is a key value consumers may continue embracing well into the 2020s.
How would you change the world from your home? Share your ideas in the comments!
View the full report The Home of the 2020s: Scenarios for How We Might Live in the Post-Pandemic Future: https://bit.ly/2TbCYf2
Solar and wind power have proven themselves to be cost competitive, but energy storage is key. What if I told you that molten metal might make a better battery? Lower cost, simpler assembly, zero maintenance, and a longer lifetime than lithium-ion. Let’s take a closer look at liquid metal battery technology.
Get $50 off with code: ROBOROCKH7 on Amazon: https://cli.fm/RoborockH7-MattFerrell-YT This promotion lasts till 7/14.
Roborock official website: https://cli.fm/RoborockH7-MattFerrell-Official.
Watch The Mechanical Battery Explained — A Flywheel Comeback? https://youtu.be/8X2U7bDNcPM?list=PLnTSM-ORSgi5LVxHfWfQE6-Y_HnK-sgXS
Video script and citations: h https://undecidedmf.com/episodes/hot-energy-storage-liquid-metal-battery-explained.
Follow-up podcast: Video version — https://www.youtube.com/channel/UC4-aWB84Bupf5hxGqrwYqLA Audio version — http://bit.ly/stilltbdfm.
👋 Support Undecided on Patreon! https://www.patreon.com/mattferrell.
A serving of mushrooms is just 0.08 kg of CO2 emissions—only lentils have a lower per serving CO2 emission level.
One common question J.P. and I get over and over again is about the problem of overpopulation—if human life extension is a humanitarian goal worth pursuing, won’t there be an inevitable environmental crisis? One worse than what we’re already facing?
When we covered the ethics of life extension we partially answered this question based on what we know about population and consumption trends now (tl;dr: we’re more likely to face a crisis of under population than overpopulation). That said, it’s practically impossible to be able to fully forecast environmental trends 50200, and further years into the future. We noted, “Spanners actually need to address it because we will have to continue living through the consequences of climate change if we don’t.”
In other words, if you’re interested in indefinitely extending your own life, sustainable eating should be a priority today because you’ll most likely be alive in the trash-filled, resource-scarce world of tomorrow.