Toggle light / dark theme

It is of course widely accepted that the Greenland icesheet is melting at an alarming rate, accelerating, and is an irreversible process, and when it finally does melt will contribute to a rise in sea levels globally by 7 meters. This is discounting the contribution of any melt from the West Antarctic ice sheet which could contribute a further 5 meters, and the more long term risk of East Antarctic ice sheet melt, which is losing mass at a rate of 57 billion tonnes per year, and if melted in entirety would see sea levels rise by a further 60 meters.

In this light it is rather ‘cute’ that the site here dedicated to existential risks to society is called the Lifeboat Foundation when one of our less discussed risks is that of world-wide flooding of a massive scale to major coastal cities/ports & industries right across the world.

Why do we still continue to grow our cities below a safe limit of say 10 meters above sea level when cities are built to last thousands of years, but could now be flooded within hundreds. How many times do we have to witness disaster scenarios such as the Oklahoma City floods before we contemplate this occurring irreversibly to hundreds of cities across the world in the future. Is it feasible to take the approach of building large dams to preserve these cities, or is it a case of eventually evacuating and starting all over again? In the latter case, how do we safely contain chemical & nuclear plants that would need to be abandoned in a responsible and non-environmentally damaging procedure?

Let’s be optimistic here — the Antarctic ice sheets are unlikely to disappear in time scales we need to worry about today — but the Greenland ice sheet is topical. Can it be considered an existential risk if the process takes hundreds of years and we can slowly step out of the way though so much of the infrastructure we rely on is being relinquished? Will we just gradually abandon our cities to higher ground as insurance companies refuse to cover properties in coastal flooding areas? Or will we rise to a challenge and take first steps to create eco-bubbles & ever larger dams to protect cities?

I would like to hear others thoughts on this topic of discussion here - particularly if anyone feels that the Greenland ice sheet situation is reversible…

Recently, Newt Gingrich made a speech indicating that, if elected, he would want 10% of NASA’s budget ($1.7 billion per year) set aside to fund large prizes incentivizing private industry to develop a permanent lunar base, a new propulsion method, and eventually establishing a martian base.

THE FINANCIAL FEASIBILITY OF A LUNAR BASE
Commentators generally made fun of his speech with the most common phrase used being “grandiose”. Perhaps. But in 1996 the Human Lunar Return study estimated $2.5 billion from NASA to send and return a human crew to the Moon. That was before SpaceX was able to demonstrate significant reductions in launch costs. One government study indicated 1/3 of the cost compared to traditional acquisition methods. Two of SpaceX’s Falcon Heavies will be able to launch nearly as much payload as the Saturn V while doing so at 1/15th the cost of the same mass delivered by the Shuttle.

So, we may be at the place where a manned lunar base is within reach even if we were to direct only 10% of NASA’s budget to achieve it.

I’m not talking about going to Mars with the need for shielding but rather to make fast dashes to the Moon and have our astronauts live under Moon dirt (regolith) shielding while exploiting lunar ice for air, water, and hence food.

IS A SMALL COLONY WITHIN REACH?
But the point of this post is this. If a small lunar base is within our reach, how much more would it take to achieve something that most of us realize would be the single most important step in ensuring the survival of the human species should a truly existential event strike Planet Earth. So I’m describing a small, self-sufficient colony. I would say that the difference between a base and a self-sufficient colony is fairly small. Small enough to make it worth our while to attempt to achieve.

THE MOST ESSENTIAL REQUIREMENTS
So, what are the requirements for a self-sufficient colony? The most critical would be air, water, and food. But understand, oxygen and water can be produced from the 600 million metric meters of water ice estimated to exist at the north lunar pole. So there’s no shortage. And with recycling, the amount of daily required input could be pretty small — small enough to easily be within a day’s task for mining. But food also requires fertilizer. Fortunately for us, the LCROSS results showed that there is also methane and ammonia in the ice and the regolith contains other minerals such as phosphorus and potassium. So, the most critical components for a colony would already be present with a manned base at a lunar pole.

HABITATS
Besides this, the colony would also need protection from the vacuum and cosmic radiation — i.e. a sealed habitat. This should not be too difficult. For a base, options include inflatable habitats and using fuel tanks as durable, sealable compartments. Radiation protection is as simple as piling regolith over the structures or even digging trenches or caves into the sides of hills or craters. That’s fine for a base. But a self-sufficient colony requires that future colonists be able to construct their own habitats. This could be achieved in the intermediate term by simply caving out habitats, supporting them, and then inflating a liner. Many such liners could be delivered in a single 5,000 kg payload. In the long term, such liners could be produced as plastics from volatiles resulting from the production of water from lunar ice. Broken liners could be patched or even melted to produce new liners. Alternately, metals can be fairly easily produced from the regolith. Run a permanent magnet through the soil, extract iron, melt it using solar concentrating mirrors and then process the molten metal to sheets, wires, cast forms, etc. Glass could be made the same way along with fiberglass. Natural lighting could supplement electrical power by using aluminum mirrors and glass. Supplemental heat could be provided in a similar manner along with locally derived insulation.

ELECTRICITY
Thin film solar panels can provide > 1,000 W/kg. So a 5,000 kg payload could provide a very large amount of onging power (if my math is correct, enough for perhaps 500 colonists). Excessive solar panels could be stored under ground and then used as needed thereby giving the colony decades of power. Eventually, a self-sustaining colony would need to produce its own power from silicon in the regolith. Storage of energy during the lunar night could be accomplished through the use of electrolysis of water to oxygen and hydrogen. These could then be recombined in a fuel cell to produce electricity and heat. Alternately, the colonists could simply travel every two weeks to the other side of the hill near the pole to another sunlit habitat.

CLOTHING
Again, to buy the colony time to be able to develop the ability to produce its own space suits, many years’ worth of thin airproof liners to space suits could be delivered in a single 5,000 kg payload. Again, a self-sustaining colony would need to eventually produce their own. Between the use of fiberglass, metals, and locally produced plastic or silicon sealants, eventually the colony could produce their own. Of course plants could be grown to provide fibers for clothing.

EQUIPMENT
To avoid day-long exposure to cosmic radiation while mining surface ice, mining could either be conducted underground or telerobotically. But regolith is very gritty and can wear out teleoperated mining equipment. But if a colony is able to produce its own metals and had machining equipment which could be used to produce more machining equipment, then the colony could stay ahead of equipment wearing out.

High-tech equipment (computer chips, cameras, and radio equipment) is certainly useful but I believe that there are ways around needing them. Still, in the interim, a single 5,000 kg payload delivery could provide centuries worth of computer chips, camera chips, and critical radio equipment components. For example, the Voyager craft have been exposed to 30+ years of 360 degree space radiation yet still work fine. So, an apple box worth of computer chips could last centuries. Eventually the colony would need to produce its own high-tech equipment. Perhaps they could use 1940’s technology such as vacuum tubes.

GRAVITY & PREGNANCY
The Moon’s 1/6 gravity is probably not enough to prevent bone and muscle loss. Experiments on the international space station (ISS) show that an exercise program can do much to prevent bone loss. A recent study indicates that Fosamax prevents bone loss in astronauts. A 5,000 kg payload could give 83 million doses of Fosamax. Stored in a permanently shadowed area, it could provide for a very large number of future colonists. But also, a basic centrifuge or even a tether ball-like contraption could provide artificial gravity for colonists for part of the day. Trenches dug along its path could provide partial protection from cosmic rays. Alternately, space forums have discussed completely underground centrifuges using various ingenious approaches.

Of particular concern is how fetal children would develop given limited gravity. Studies of animals on the ISS indicates that this is a real concern. We don’t know enough about this issue. Perhaps pregnant women would need to spend significant amounts of time in a centrifuge perhaps in all trimesters.

ADDITIONAL REQUIREMENTS
I have started with the most essential requirements and have worked down. I propose that there are technologic solutions for each of the requirements but perhaps I have been unrealistic in one or more areas or perhaps have neglected to address an important requirement. Feel free to comment below.

GENETIC DIVERSITY
For a truly self-sustaining colony, for humans, the Minimum Viable Population (MVP) is in the realm 1,000. I personally suspect that it is actually less than that but a solution here could be for a single payload delivery of frozen embryos for surrogate parenting to be frozen long-term in permanently shadowed areas. Although this may strike some as being unethical, these would only be needed in the event of a truly existential event on Planet Earth.

PRESERVING THE BIOSPHERE
I envision the colony as not only securing the human species but a good representation of Earth’s entire biosphere. But discussing the details of that topic would extend this post much longer than it has already become. More on that later.

Twenty years ago, way back in the primordial soup of the early Network in an out of the way electromagnetic watering hole called USENET, this correspondent entered the previous millennium’s virtual nexus of survival-of-the-weirdest via an accelerated learning process calculated to evolve a cybernetic avatar from the Corpus Digitalis. Now, as columnist, sci-fi writer and independent filmmaker, [Cognition Factor — 2009], with Terence Mckenna, I have filmed rocket launches and solar eclipses for South African Astronomical Observatories, and produced educational programs for South African Large Telescope (SALT). Latest efforts include videography for the International Astronautical Congress in Cape Town October 2011, and a completed, soon-to-be-released, autobiography draft-titled “Journey to Everywhere”.

Cognition Factor attempts to be the world’s first ‘smart movie’, digitally orchestrated for the fusion of Left and Right Cerebral Hemispheres in order to decode civilization into an articulate verbal and visual language structured from sequential logical hypothesis based upon the following ‘Big Five’ questions,

1.) Evolution Or Extinction?
2.) What Is Consciousness?
3.) Is God A Myth?
4.) Fusion Of Science & Spirit?
5.) What Happens When You Die?

Even if you believe that imagination is more important than knowledge, you’ll need a full deck to solve the ‘Arab Spring’ epidemic, which may be a logical step in the ‘Global Equalisation Process as more and more of our Planet’s Alumni fling their hats in the air and emit primal screams approximating;
“we don’t need to accumulate (so much) wealth anymore”, in a language comprising of ‘post Einsteinian’ mathematics…

Good luck to you if you do…

Schwann Cybershaman

It was with great satisfaction that I watched a recent (Horizon?) documentary on the wildlife, wolf population and introduced endangerd species flourishing in the Chernobyl district in the abandonment of the area by mankind 25 years ago — with most not willing to hunt in the area for fear of contracting radiation poisoning. One wonders if this will be the template for the future, that eco-disaster areas will be abandoned to become our new wildlife sanctuaries. Or is it morally wrong to designate such areas as wildlife sanctuaries and wilfully expose the animal kindom to such levels of radiation?

After Fukushima the world was reawakened to the real danger of fault tollerance at nuclear power plants — but as a relatively clean technology is surely here to stay. Is there a need for a more inclusive debate on the location of such reactors to areas that are a) less likey to suffer natural disasters but b) also provide a suitable follow-on purpose in the event of area abandonment due to radiation. Opinions welcome.

Greetings fellow travelers, please allow me to introduce myself; I’m Mike ‘Cyber Shaman’ Kawitzky, independent film maker and writer from Cape Town, South Africa, one of your media/art contributors/co-conspirators.

It’s a bit daunting posting to such an illustrious board, so let me try to imagine, with you; how to regard the present with nostalgia while looking look forward to the past, knowing that a millisecond away in the future exists thoughts to think; it’s the mode of neural text, reverse causality, non-locality and quantum entanglement, where the traveller is the journey into a world in transition; after 9/11, after the economic meltdown, after the oil spill, after the tsunami, after Fukushima, after 21st Century melancholia upholstered by anti-psychotic drugs help us forget ‘the good old days’; because it’s business as usual for the 1%; the rest continue downhill with no brakes. Can’t wait to see how it all works out.

Please excuse me, my time machine is waiting…
Post cyberpunk and into Transhumanism

Space is a hard sell these days. Aside from the persistent small community of die-hard space advocates and New Space entrepreneurs, the relevance of space to the society at large has generally declined since the grand achievements of the Space Race and even such great feats as the building of the ISS have garnered rather modest public attention. In recent years we have had more active astronauts than ever in history, yet few among the general public can name a single one. An appreciation of space science seems to have improved in recent years by virtue of the impressive visuals offered by orbital telescopes, space probes, and rovers. But the general public commitment to space development still dwindles in the face of mounting domestic issues. Most recently we have seen a drastic contraction of national space agencies in response to the current global economic turmoil. Programs are reduced, cut, or under looming threat. We hear pronouncements of deemphasis of costly manned space activity by the major national players in space development. The world leader in space, NASA, now drifts aimlessly, its premier launch system–controversial from the start, often dismissed as a boondoggle, and dragged along for far too long–finally succumbing to obsolescence without a replacement at-hand, leaving the agency dependent upon foreign nations and struggling for a semblance of direction and purpose. In this past few years, finding itself abandoned on both right and left sides of the political fence, it faced the very real possibility of being shut down altogether and now its partner DARPA talks of century-long space programs with no government involvement at all because the very idea of the US government having the coherence to accomplish anything that takes more than one electoral cycle to do has become implausible.

Overconfident to the extreme after recent very significant, yet still modest in the broad perspective, successes, the newest faction of the commercial space community, the New Space entrepreneurs, boast their readiness to pick up the slack, not quite cluing into the fact that the rope isn’t just dropped, it may be cut! Space industry has never been a very big industry despite the seemingly gigantic sticker prices of its hardware. The global space industry accounts for around 160 billion dollars annually. Soft drinks account for 350 billion. Coca Cola is bigger than NASA. Meanwhile, the lion’s share of commercial space service has always been for governments and the remaining largely telecommunications applications –after 50 years still the only proven way to make money in space- face slow decline as latency becomes increasingly critical to mainstream communications. The ‘grand convergence’ long anticipated in computing has now focused on the Internet which is steadily assimilating all forms of mainstream communication and media distribution. Despite a few service providers of last resort, satellites simply don’t work as a host for conventional Internet and physics precludes any solution to that. We owe recent surges in launch service demand more to war than anything else. Ultimately, we’re not looking at a privatization of national space systems. We’re looking at their outright obsolescence and an overall decline in the relevance of space activity of any sort short of science applications, which have no more need of astronauts than for manned submersibles and for the same reasons. The need for space services will not disappear but, as it stands now, has little likelihood of growth either–except on the back of war. Logically, what commercial space desperately needs is a program for the systematic cultivation of new applications the space agencies have never seriously pursued–new ways to make money there, particularly in an industrial context. And what do the mavericks of New Space have on offer in that context? Space tourism for the rich, during a time of global recession…

There is a great misconception today that the challenges of commercial space are merely technological problems waiting to be solved by that one new breakthrough propulsion technology that never materializes. But commercial air travel did not become ubiquitous by virtue of flight technology becoming miraculously cheap and powerful like microprocessors. It became ubiquitous by realizing markets of scale that supported aircraft of enormous size needing very large minimum operation economies of scale, where populations of millions in communities with well-heeled comfortable middle-classes are necessary to generate sufficient traffic to justify the existence of a single airport. A single A380 airliner costs almost as much as the development of a typical unmanned launch system. Air travel was never particularly successful in an industrial sense. Most stuff still moves around the world at the 20mph speed of ships. The New Deal and the remnant air support infrastructure of WWII were together probably more responsible for the modern airline industry than any engine or aircraft design–because they created the market. If it takes a population of millions to justify the existence of a single conventional airport for conventional airliners, what then a Pan-Am Orion?

For those who look to space as an insurance policy for life and the human civilization, this situation should be of much concern. Whether it be for averting the potential disasters of asteroid strikes or as a redoubt for some fraction of civilization in the event of any terrestrial disaster, a vast space-based infrastructure must be continually at-hand for such capability. Yet these kinds of threats do not themselves seem to have ever inspired sufficient concern in the general public or political leaders to demand such capability be established and maintained for its own sake. You cannot talk in public about such space contingencies and be taken remotely seriously. One could say we have been a bit too lucky as a civilization. There have been no small asteroid impacts in historic memory and few global existentially threatening events beyond those we human beings have created –and we’re very good at systematic denial of those. So this contingency capability relies on being incidental to other space development. That development has been inadequate for that to date, counting on future expansion that has never materialized. What then as we watch that development fizzle-out altogether? The essential cultural relevance of space development can be seen as crucial to the long-term survival of our species, and that’s in marked decline.

What happened to space? Just a generation ago this seemed to be a significant concern for the global society. Wherever you were in the world, whatever your station in life, space mattered in some way, even when the majority of activity was being pursed by just two conflicting superpower governments. In those two nations, a sense of vicarious participation in the space programs through the general contribution to national productivity spread across the society. We were all part of the space program and we all largely defined our future as a civilization–when we weren’t so scared witless as to doubt there was any–in the partial context of space development. When and why did this stop mattering to us? Can we make it matter again?

The Blessing and The Curse:

Space development owes a lot to Nikita Khrushchev. If any one man can be said to be largely responsible for the Space Age it was him–whatever we might think of his overall historic legacy. Wernher von Braun is largely responsible for the vision of space development that captivated the world at the time and, in partnership with Walt Disney, spread like a meme through the contemporary popular culture where it was echoed in countless ways in a diversity of popular media. They are why the US wound up with a civilian space program and not a ‘space force’, von Braun understanding that a strategic military imperative alone could never get us beyond Earth orbit. The movement for this civilian space program was well underway at the time and the Space Race a timely opportunity for it. But Khrushchev largely instigated the Space Race as we’ve come to understand it, set ad hoc the ground rules for the competition superpowers would engage in, and created the model of space agency process for development both major players would employ, even if supported by different infrastructures. Most importantly, he established the pursuit of specific space goals not as an extension of the arms race, as implied in the impact of Sputnik, but as a nationalist competition for geopolitical prestige through technical and industrial prowess. It was a peaceful, less dangerous, alternative to the arms race, even if the ultimate implication of this prowess in space was one of potential military might on Earth. It was a reinvention of the medieval tournament on a vastly more grand scale. And this is why, in seemingly such a short amount of time after the collapse of the Soviet Union, US and Russian space agencies could so readily become partners. There was never an animosity between these space programs and agencies, despite the bitter cultural animosity cultivated in mainstream society by Cold War propaganda. It was an attitude akin to olympic athletes.

Thus competitive nationalism proved a powerful force for driving space development. But it was ultimately an unsustainable one. At some point someone ‘won’. One could argue that the Space Race did not end with the US manned landing on the Moon but rather with the failures of the beautiful yet doomed Soviet N1 rocket. One might even say the Soviets lost the Space Race with the ouster of Khrushchev and the reestablishment of a more conservative Soviet internal order that likely contributed to the N1 failure. Apollo was doomed to a premature suspension even as the first astronauts set foot on the Moon, because without a competitor the nationalist imperative for space could not be sustained. As soon as this particular competition was over, the propaganda machine was directed elsewhere–inward against an eruption of civil unrest across the western world prompted by protracted poorly-rationalized wars, repeated political disillusionment, the subtle mass psychological effect of perpetual existential threat under the Cold War, race, class, and generational conflict, energy crisis, and the increasingly blatant excesses of corporate culture. To a certain degree, the Space Race itself had contributed to this by virtue of the change of social perspectives access to space had produced. We, for the first time as a whole global society, had seen the Earth as a whole and sensed our rather precarious position in the larger universe. This was a powerful thing. Culturally, we began to think of the world as a whole, of its systems as a whole, its resources finite and ourselves as planetary rather than state citizens. This, in particular, catalyzed a new popular international environmentalist movement of far greater scope than the conversation movements of the early 20th century.

At this time in history nationalism itself was dying in the western culture. The society now had a global, cosmopolitan, perspective. The basic belief of the public in the generally good intentions of government was lost–and remains lost. Almost no one in the world today, regardless of political alignment, now seriously believes their government has their best interests in mind, this attitude continually reinforced by scandal, war, and blatant expressions of authoritarianism and institutional violence continuing unabated to the present day. In the US nationalism was co-opted by extremist political conservatives, and thus discredited in the popular culture as a cynical tool of propaganda. (and both political parties bear equal share of the blame for that) Consequently, most everything that once served as a symbol of nationalist pride and identity in the past has become, to some degree, tainted, silly, childish, anachronistic in the manner of the weird aesthetic of a North Korean propaganda poster. And one of those symbols is the space program which, with the government abandonment of Apollo and the general public abandonment of the hopeful future envisioned by von Braun, lost its public mandate. Without that mandate NASA, in order to survive, was compelled to transform into just another state bureaucracy, ruled by the logic of a eunuch in the ancient Chinese imperial court and compelled to pander simultaneously to the absurd vanities of opposing political parties. Its programs since Apollo all reflect this kind of logic, which is why the general public often has a hard time comprehending their purpose and relevance and why they are such easy targets for accusations of folly and boondoggle. The public doesn’t understand the court games that must be played here–the very different kind of logic underlying the design of a Space Shuttle or ISS. It doesn’t have a lot to do with space. The public and the government have very different priorities for space summed up in the simple observation that while the public has always understood space as a place we intended to ultimately to go and live, government is not in the business of inventing new places for people to go and not pay taxes. Any commitment for space ever claimed by government has always been fundamentally disingenuous–a cover for another agenda that probably has nothing to do with space itself. Space agencies are stuck in the middle, at once trying to pay lip service to The Dream while ultimately beholden to the system that actually writes the checques.

This is how we have arrived at the sorry situation we find ourselves in with space development today and in order to overcome this we must seek a new basis for a mass cultural relevance to space. We must understand that the objectives we seek in space, in particular the objectives of space settlement and the establishment of the infrastructure we need to support those space-based contingencies for existential threats, cannot be rationalized entirely under the narcissistic imperatives of governments, strategic military imperatives, or the extremely narrow weltanschauung of commercial interests. This has to matter to us as a society in a very basic way. The imperative for space should be as fundamental to us as the imperative to reproduce, build careers, and build a better life. Only with such fundamental importance can space development achieve the necessary social and economic focus it needs to truly carry us to a spacefaring civilization. But on what basis this new relevance?

Six Degrees of Separation:

There is one very powerful aspect of space development that potentially links it very directly to the concerns everyday terrestrial life; the pursuit of the means to live in space essentially means the development of technology to sustainably go from dirt, rocks, and sunlight to a middle-class standard of living using systems on the scale of home appliances. What aspect of life on Earth would such capability NOT impact?

Today, the relevance of space activity is defined largely in terms of the social and economic dividends of ‘technology transfer’ characterized like a game of Six Degrees of Separation where agencies basically try to confabulate credit for every historic technical achievement short of fire and the wheel. No one really buys this anymore. Most certainly space development and science have made very great achievements but these become diluted in perceived social value when simultaneously associated with nebulous claims of connections so tenuous that even James Burke would be hard pressed to see them. The links between space activity and everyday life cannot be taken seriously when so tenuous. They must be seen as direct, immediate, and concrete.

One great opportunity for contemporary cultural relevance long overlooked by space agencies and companies alike is environmentalism. As noted earlier, our public exposure to a space perspective is one of the key factors in the creation of the environmental movement that we have today. Space science is largely responsible for our understanding of the global impact of pollution and the current understanding of Global Warming. Yet, right now, environmentalism sees space activity as nothing but pointless folly providing welfare to the military industrial complex. (even if, in reality, its fraction of contribution to the established aerospace industry would be lucky to be considered marginal) Why this disconnect? Part of this relates to environmentalism’s generally uneasy relationship to science, it’s roots in 19th century Romanticism and its fundamental opposition to Enlightenment philosophy seen as the root cause of the social and environment degradation inherent to the Industrial Revolution. Contemporary environmentalism is very willing to partner with science and exploit, for sake of its own public credibility, various science personalities where that suits its agenda. It will make heroes out of people like James Lovelock, and Jacque Cousteau. But it is just as willing to abandon science on grounds of its association with commercial technology and–getting back to those old roots–its reductionist perspectives. In their extremist factions, environmentalists today are just as anti-science as right-wing Christian fundamentalists and as doggedly Malthusianist as corporate Objectivists. But perhaps the most important reason for this disconnect is the underlying curse of the Space Age’s origins in nationalism and the relationship of space agencies to fundamentally discredited government, militaries, and the corporate military industrial complex environmentalists see as one of the greatest evils in the world today.

But this is not a perception the space agencies could not have overcome had they pursued a greater, more concerted, alignment to the pursuit of environmental science and renewable energy technology which, of necessity, it has pursued for its own in-space uses. Who understands more about renewable energy than NASA? Who has done as much research? Who else has put it to such cutting edge use? Do we not fuel rockets with hydrogen and power space stations with solar panels? These things could have been catalysts of national renewable energy infrastructure development. Yet NASA was a latecomer in the concerted practical use of solar and wind power–beaten to it by none other than the US military!–and the deployment of LEED certified facilities when it probably could have been the original authors of that LEED criteria.

Perhaps the reason for this missed opportunity is that space agencies are ultimately creatures of politics and one of the great problems we face today across the developed nations is the irrational politicization of energy technology. Through systematic political corruption by vested interests, the choice of energy technology has became a matter of political ideology. This is patently absurd. It’s like an arbitrary religious taboo against certain foods in the midst of a famine. And because space agencies are compelled to pander to the vanities of political parties, it simply never had the option to employ and promote technologies that became characterized as politically controversial. The blunder here has been in not recognizing that a public mandate is far more important to space agencies than mutual support from self-interested political leaders. With that mandate, the flow of influence is reversed and the government compelled to follow their lead. Administrators have become too comfortable playing the game by politics’ rules.

Oddly enough, space agencies have at times tried–half-heartedly and thus futilely–to promote renewable energy in a space industry context in the form of the Space Solar Power that was of much interest in the late 1970s and has seen some revival in recent years. Space Solar Power was the key rationalization for the concept of large orbital space colonies that emerged from the legendary ’77 Summer Study and epitomized in books such as Girard O’Neill’s High Frontier. The space colony was the home to the orbital workforce that would produce this vast space solar power infrastructure from lunar-sourced materials. This was a vision that briefly enjoyed popular interest world-wide–to the point where it actually became the subject of theme park attractions like Disney’s Horizons–and which space agencies totally failed to capitalize on as they continued to transform from space programs into space bureaucracies.

Emerging at the height of the ‘70s Energy Crisis, the concept of space solar power should have put space squarely into the middle of mainstream cultural concerns were it not for the problem of government politicization of energy and, even more peculiar, environmentalism’s very negative response to the concept persisting to this day. There are many open technical questions about the viability of Space Solar Power. This author is himself quite skeptical of it based on the question of power delivery beam density and rectenna area and the practical cost-performance comparison to terrestrial solar power. There is, to date, a lot of hand-waving. But this is not why environmentalism was so cold to this concept. It rejected it because the basic idea of a super-power nation and its corporate military industrial complex deploying a gigantic concentrated energy infrastructure perpetuates a model of energy economy hegemony that environmentalism’s embrace of renewables was intended to stand against. In other words, environmentalists are generally only interested in alternative energy technology that can be deployed in small scales–put on the roof of your off-grid cabin in the wilderness as a symbol of grass-roots protest against corporate fossil fuel hegemony. The problem, as environmentalism perceives it, is not just that fossil fuels pollute but that the concentrated economic power created by concentrated energy production hegemonies is a key cause of class exploitation and a root source of the inherent unsustainability in our entire industrial infrastructure. This sort of grass-roots independent energy protest was originally a necessity with wind and solar because of the refusal of industry to seriously pursue renewables development at any significant scale, forcing proponents to small independent deployment and technology demonstration and a bottom-up cultivation of demand for the technology, though the down-side of this is that it further reinforces the politicization of energy technology. For this same reason environmentalism has ignored or lambasted many other promising renewable energy technologies that happen to have large minimum economies of scale, such as OTEC. This is an issue many current proponents of Space Solar Power in the space advocacy community still fail to comprehend.

Had we put this in a different context, the outcome might have been much different. There has long been an opportunity here to frame space development in the context of a general and direct improvement of terrestrial life. An option to say–and demonstrate–that the pursuit of sustained habitation in space is simultaneously the pursuit of a better, more sustainable, life on Earth, the fulcrum of that proposition being the nature of the technologies we must develop and employ in order to live in space. Technologies the public has never been presented with much illustration/demonstration of. The lifestyle of the inhabitant of space is the most ‘green’ lifestyle one might imagine because the essential process of space habitation revolves around the cultivation of garden habitats of various kinds, life support systems that mimic the cycles of the terrestrial biome, renewable energy systems at many scales, and sophisticated miniaturized industrial technology that, deployed on Earth, would promote industrial–and incidentally economic–demassification. Space development IS a progressive movement!

This is also very important in a commercial context because it is just as critically necessary to relate commercial space activity to things that matter to the public as that is for government space activity. In fact, even more so in the sense that, in order for commercial space to be viable, it must produce products and services that relate to the needs and desires of a mainstream public. There isn’t much money to be made at the top of the pyramid. There is more money in CocaCola than in champagne. This is why a systematic pursuit of new space applications is very critical to any potential growth in commercial space–and right now that doesn’t exist.

This author is going to go out on a limb with a very controversial observation; one of the key hindrances to future economic growth in the New Space community is it’s inability to culturally align to the interest of the public and actually function as a community. It is making exactly the same mistake national space agencies have been making for decades. This at least partly relates to its association with extremist Libertarianism, a preponderance of Global Warming deniers, an indifference to environmental and social concerns, and most importantly, an inability to systematically pursue new market-relevant space applications as a cooperative community with coherent shared objectives. This is not just a matter of politics and philosophy. This is a matter of the bottom-line economic potential for the industry. The ability of the industry to realize growth and value. It’s ability to make money. If you can’t relate to the mainstream society, you don’t matter.

Right now commercial space desperately needs the kind of cross-industry coherence and cooperation that typified the computer industry of the ‘80s and ‘90s. Just like the computer, our goals in space are too complicated and technically challenging. No one company can do all we need to do in space any more than one company was capable of realizing the personal computer as we know it today. There are not enough ways to make money in space, either existing or proposed. The cooperative addressing of that issue should be the number one concern of commercial space developers. And, again, the concept of space habitation as a general goal is a potential catalyst for this focus. It reduces space activity to a specific logistical context, a specific spectrum of industrial capabilities, which can result in the identification and realization of specific products and services for the terrestrial market. It’s not all about how we get out there. It’s not about CATS. As long as there is no such thing as a generic launch capability, CATS only has any meaning in the context of specific applications. Pursuing launch capability in the absence of application development is nonsense. What ultimately matters is WHY we go out there. That’s what defines the market. We don’t have enough answers to that question.

Making it Matter:

Lets reiterate a key point; the pursuit of the means to live in space essentially means the development of technology to sustainably go from dirt, rocks, and sunlight to a middle-class standard of living using systems on the scale of home appliances. If we understand the full ramifications of this statement we see a great potential at-hand for the re-establishment of a sustainable cultural relevance for space. With this concept we can make space matter as it has never mattered to the global society before, in a very direct way that impacts every person’s life and the future of life on Earth in general. As pointed out, what would such capability not impact? What would it not improve? The public has always understood space as a place we intend to go and live. It’s space agencies’ and space industry’s inability to make sense of, and relate to, that understanding that has been its undoing. It’s not the public that’s been distracted. It’s the space community.

There is growing recognition that the Moon is the logical next step for sustainably opening space to human settlement. It is now confirmed that both lunar poles contain appreciable quantities of ice containing water and also carbon and nitrogen containing compounds. Since the Moon is always only a 3-day trip away, it easily beats low-gravity asteroids as the most economic place to mine water ice. Similarly, since the Moon has only a 3-second roundtrip communications delay, teleoperated robots could mine and process the lunar ice at a fraction of what human miners would cost. That ice, brought back to Low Earth Orbit (LEO) could establish a new space economy including on-orbit refueling, boosting large communications satellites to GEO, sending tourists around or even to the Moon, and facilitating NASAs Beyond Earth Orbit activities. So the Moon is a great place to develop economic in-space resources.

But, what does all of this do with survival?

Amongst those people who understand extinction risks to humanity, it is generally recognized that an off-Earth, self-sufficient colony would go a very long ways to ensuring the survival of humanity as a species. An orbiting colony would not be a good choice because, if the Earth’s biosphere were contaminated with an ecophage, the Earth itself would not anymore be a source of supplies, and Earth orbit contains no resources except for sunlight. Mars, an asteroid, or a distant moon could be a location for an off-Earth colony, but all of these would be considerably more expensive to establish than on the Moon. For those of us who think it prudent that we should purchase “insurance” against the extinction of humanity sooner rather than later, the least expensive location makes the most sense. So the Moon is a great place to establish a colony for the purpose of survival.

Interesting, so the Moon is the best place for both economics and survival. Perhaps the two could be combined into a single program. But, in the Age of Austerity, it is unlikely that our governments are going to fund a large new space program. So how can this be done economically?

Three of some of the most encouraging developments in space are:
- the lower launch prices that SpaceX is offering including their large Falcon Heavy,
- the success of the Commercial Orbital Transportation Service (COTS), and
- the incredibly cheap development of small lunar landers thanks to the X-Prizes.

This suggests that there is an inexpensive path to two COTS-like programs:
1) a Commercial Cis-lunar Tranportation Service and
2) a Commercial Lunar Ice Development Service

More details could be given regarding the technical details of how these programs would work but are beyond the scope of this article. Rather, let’s look at how close a lunar ice development venture get a manned base towards full self-sufficiency.

Lunar ice would give drinkable water, breathable oxygen, and the carbon and nitrogen volatiles which would be needed for growing plants. Lunar soil would provide other needed nutrients. So lunar ice mining would already be providing life support supplies greater than what a small colony would need thereby allowing for lengthy stays in an underground shelter. Solar concentrators would provide enough heat to melt regolith allowing for the production of metals, glass, fiberglass, ceramics and such.

But the Moon is a harsh environment requiring high-tech tools just to survive. But one box delivered to the surface of the Moon could provide a hundred years worth of computer chips, or cameras, or air-proof space suit liners thereby buying the colony many years to eventually develop their own technology. So, in a relatively short period of time a self-sufficient lunar colony could be established. Then provide it with deliveries of frozen embryos, seeds, eggs, DNA, and microfiche information and you have the makings for the reboot of a new civilization and biosphere eventually on Mars.

The point of this article is that on off-Earth, self-sufficient colony is not that far away and could be a relatively modest additional step for an economically viable lunar ice operation.

Dear Team and readers,

I am particularly concerned about the damage we cause to the environment starting with junk in space, earth, and the ocean.

As a participant of Singularity University ’11 at NASA Ames, I am very happy to share with you my video about space debris:

http://www.youtube.com/watch?v=TI3V09tfcAc

I am willing to create an international organization that regulates the amount of debris starting with space. If interested, contact me.

I hope you will like it and feel free to publish the video and share it among your friends.

Yasemin

The objective for the body and more specifically cells is to monitor its energy potential and well being just like we’d monitor anything else with a modern information system/information technology (IS/IT).

Apoptosis is an intentional death of a cell that triggers a “natural” death, Necrosis is an unintentional death of a cell due to damage. While there are some inherent dangers with existing and making it as difficult today to avoid necrosis as it was yesterday, we can aim to scientifically identify apoptosis and manage it. Most of us are familiar with apoptosis, we call it cancer…a phenomenon where cells don’t know when to call it quits and we suffer as a result of the growth.

The specific technology doesn’t exist yet, but we require a mechanism to measure and regulate mitochondrion decisions on-demand. Let’s get to work people! Is there a way that we could constantly monitor mitochondrial regulation without losing blood regularly like a the annoying finger prick monitoring that diabetics have to currently endure.

Lance Becker does a good job of further elaborating on this topic and charging us with a new objective of creating the technologies that will assist in life management and extension.

There are as many ways to help another human being as there are people in need of help. For some, the urgent need is as basic as food and water. For others, it is an opportunity to develop a talent, realize an idea, and reach one’s full potential. Helping people get what they need most in life is at the heart of successful philanthropy.

However, you can’t simply give money away without thinking deeply about how and where the money will go and why you’re doing the giving. You need to approach philanthropy in a strategic and systematic way—just as an entrepreneur approaches a new venture. That’s the only way to make a self-sustaining difference in the world. That being said, here are five key ways to achieve sustainable success with your philanthropic efforts.

1. Open a Door
Helping people boost themselves out of poverty is the best way to make a lasting positive difference in a person’s life. A new skill, an introduction, an education—these gifts open doors that would otherwise remain closed. A promising beneficiary will walk through that door and create opportunities for others.

2. Define Your Passion
To have enduring impact, your philanthropic efforts should reflect the causes you are most passionate about. For me, one of those things is education: A good education is the most valuable thing you can give another person. My own philanthropic efforts have always included an educational element, whether it’s expanding opportunities to educate a promising mind or extending the brain’s ability to learn. If you follow your own passions, you’ll increase exponentially your chances of sustainable success.

3. Seek Out Inspiration
To truly change the world, you need to inspire—and be inspired by—others. I’ve found many people who share my interest in neuroscience—brilliant people like V.S. Ramachandran, and David Eagleman. They inspire me to learn more, do more, and raise my standards higher. That, in turn, inspires those I work with to raise their game. Having someone you can talk to and work with makes the job of changing the world less daunting, builds deep trust, and sparks vital creativity.

4. Measure Your Impact
You’re more likely to achieve success if you can define ahead of time what form that success will take and track progress toward your goal. Set milestones along the way so you can adjust your approach and add more resources, if necessary. Simple metrics can be a powerful tool to engage people’s competitive spirit and harness it for a good cause.

This approach is what the X Prize Foundation has done in the nonprofit science field, from genomics to space exploration—it defines the goal, sets the parameters, and measures the results. And at the end there is a payoff: a cash prize for the innovators and a new body of human knowledge for the rest of us who are the true winners.

5. Think Like an Entrepreneur
None of the previous points will create a sustainable philanthropic effort unless you are constantly looking for newer and better ways to make a meaningful difference. That means looking at the world and living life as a philanthropic entrepreneur.

For example, Kairos Society, (disclosure: my son, Ankur Jain, founded the organization and I’m a supporter), is based on the belief that the key to improving our world lies in giving the next generation of leaders different opportunities to develop globally impactful innovations. Kairos brings promising young people together with successful business and political leaders from around the world to create sustainable solutions to the world’s most pressing problems.

Continuing to pass down enthusiasm for philanthropy provides chances and opportunities to the people who need it most. Growing up in India, I knew all I needed to change the world was one good opportunity, and I prepared myself for it. When that opportunity came—in the form of the chance to earn an engineering degree—I was ready. With sustainable philanthropy, we can make sure that these chances for success can be grasped by the next generation. This is philanthropy that is truly sustainable.

Follow Naveen Jain at Twitter

Visit Naveen Jain on Google Plus