Toggle light / dark theme

Tesla took Ludicrous Mode to new heights today. Some subtle wiring changes and a major battery upgrade improved mileage and gave the Model S enough oomph to go from 0 to 60 mph in 2.5 seconds—within fractions of seconds of Ferrari and Porsche models.

The extra performance is largely attributed to a larger battery. Its 100kWh is a 10 percent increase from the previous largest option, and increases total distance for some models by up to seven percent.

Of course it comes at a price. The Model S now costs as much as $134,000—and as always you need to be able to charge it.

Read more

Nice.


Shopping trends change from time to time while consumers continue to search for more affordable products with better functionality and specs. Researchers and developers around the world continue to improve company products while lessening the cost of producing these materials.

Gadgets like smartphones, LED lights, tablets and solar cells are already part of the mainstream, and it is not going to change anytime soon. Companies that are involved in this industry must always keep a competitive edge against other manufacturers.

Cheap and Useful 3D Printed Electronics

Read more

In the US during the early 2000s there was an old political term for low skilled jobs, politicians called these jobs “the jobs that no one in America wanted.” Well, we now can start seeing the slogan by politicians as “the jobs that Robots can do for free.”


The focus of automation in farming has shifted from assisting humans to replacing them.

More

The average age of Japanese farmers is 67. Across all developed countries, the average age of growers is 60. Robotics and automation technologies are just now reaching the stage where agricultural robots can replace human farmers for many or most crop growing tasks.

Read more

Every year, humans advance climate change and global warming — and quite likely our own eventual extinction — by injecting about 30 billion tonnes of carbon dioxide into the atmosphere.

A team of scientists from the University of Toronto (U of T) believes they’ve found a way to convert all these emissions into energy-rich fuel in a carbon-neutral cycle that uses a very abundant natural resource: silicon. Silicon, readily available in sand, is the seventh most-abundant element in the universe and the second most-abundant element in the earth’s crust.

The idea of converting to energy isn’t new: there’s been a global race to discover a material that can efficiently convert sunlight, carbon dioxide and water or hydrogen to fuel for decades. However, the of carbon dioxide has made it difficult to find a practical solution.

Read more

Congrats Hong Kong Univ.


Researchers at The Hong Kong University of Science and Technology (HKUST) have fabricated microscopically-small lasers directly on silicon, enabling the future-generation microprocessors to run faster and less power-hungry – a significant step towards light-based computing.

The innovation, made by Prof Kei-may Lau, Fang Professor of Engineering and Chair Professor of the Department of Electronic and Computer Engineering, in collaboration with the University of California, Santa Barbara; Sandia National Laboratories and Harvard University, marks a major breakthrough for the semiconductor industry and well beyond.

Silicon forms the basis of everything from solar cells to the integrated circuits at the heart of our modern electronic gadgets. However, the crystal lattice of silicon and of typical laser materials could not match up, making it impossible to integrate the two materials until now, when Prof Lau’s group managed to integrate subwavelength cavities — the essential building blocks of their tiny lasers — onto silicon, allowing them to create and demonstrate high-density on-chip light-emitting elements. The finding was recently published as the cover story on Applied Physics Letters.

Read more

Another spin on AI in how it eradicates poverty; hmmm.


Eradicating extreme poverty, measured as people living on less than $1.25 US a day, by 2030 is among the sustainable development goals adopted by United Nations member states last year.

A team of computer scientists and satellite experts created a self-updating world map to locate poverty, said Marshall Burke, assistant professor in Stanford’s Department of Earth System Science.

It uses a computer algorithm that recognizes signs of poverty through a process called machine learning, a type of artificial intelligence, he said. Results of the two-year research effort have been published in the journal Science.

Read more

As the global headcount nears 8 billion, our thirst for kilowatts is growing by the minute. How will we keep the lights on without overheating the planet in fossil fuel exhaust? Alternative energy is the obvious choice, but scaling up is hard. It would take an area the size of Nevada covered in solar panels to get enough energy to power the planet, says Justin Lewis-Weber, “and to me, that’s just not feasible.” This past March, Lewis-Weber, a then-high school senior in California, came up with a radical plan: self-replicating solar panels—on the moon.

Here’s the gist: When solar panels are orbiting Earth, they enjoy 24 hours of unfiltered sunshine every day, upping their productivity. Once out there, they could convert that solar radiation into electricity (just as existing solar panels do) and then into microwave beams (using the same principle as your kitchen appliance). Those microwaves then get beamed back to Earth, where receivers convert them back into electricity to power the grid. Simple! Except that Lewis-Weber estimates that building and launching thousands of pounds of solar panels and other equipment into space will be outrageously expensive, in the range of hundreds of trillions of dollars.

Instead, he suggested, why not make them on the moon? Land a single robot on the lunar surface, and then program it to mine raw materials, construct solar panels, and (here’s the fun part) make a copy of itself. The process would repeat until an army of self-replicating lunar robot slaves has churned out thousands of solar panels for its power- hungry masters.

Read more

Scientists in Singapore have created a new type of concrete that bends, but is more durable and sustainable than the typical concrete.

Scientists at Nanyang Technological University (NTU)-JTC Industrial Infrastructure Innovation Center have created a new type of concrete that is flexible and more durable than regular concrete. They call it ConFlexPave.

According to its inventors, ConFlexPave can greatly reduce the weight and thickness of precast pavement slabs, making them lighter and easier to transport and install — thus, halving the time needed for road work and new pavement. Also, because it is more sustainable, it requires less maintenance compared to conventional concrete.

Read more