Toggle light / dark theme

Synthetic biology is essentially an application of engineering principles to the fundamental molecular components of biology. Key to the process is the ability to design genetic circuits that reprogram organisms to do things like produce biofuels or excrete the precursors for pharmaceuticals, though whether this is commercially viable is another question.

MIT’s Jim Collins, one of the founders of synthetic biology, recently explained it to me as putting the engineering into genetic engineering.

“Genetic engineering is introducing a gene from species A to species B,” he said. “That’s the equivalent of replacing a red light bulb with a green light bulb. Synthetic biology is focused on designing the underlying circuitry expressing that red or green light bulb.”

Read more

Worried that AI’s one day could make us their pets Elon Musk is teasing a new brain-hacking tech

There’s no doubting that Elon Musk is one busy guy. Whether he’s trying to land on Mars with SpaceX, running Tesla, buying SolarCity, investing in the future of AI, building Giga factories or throwing out Hyperloop concepts for fun but it’s increasingly apparent that he’s giving a huge amount of thought to the day when advanced AI’s become the most intelligent form of “life” on the planet.

With the advances that we are already seeing in AI it’s inevitable that one day – sooner rather than later humans will, comparatively speaking, be as intelligent to an AI as pets are to us today. To that end, the billionaire polymath has revealed he may be working on something called a “Neural Lace”, a nanotechnology based device that you can think of as being a digital upgrade for your brain. Human intelligence combined with the power of AI – a digital layer directly overlaid onto the brains cortex.

Read more

Elon Musk has recently hinted that he may be working on a “neural lace,” a mesh of electronics that will allow AI and the brain to work together. This could help human brains keep up with future enhancements in AI.

There’s no doubt that Elon Musk is one busy individual. When not playing on the Tesla factory floor, he may be bringing electric roofs to electric vehicles, or dreaming up the Hyperloop, or toying with the future of AI.

If not any of those, he is apparently busy protecting us from being treated like house pets after the Singularity. To that end, the billionaire polymath has revealed he may be working on something called a “neural lace.”

Read more

By Sveta McShane: Organizations as diverse as the United Nations and Monsanto are in agreement that we need to double our food production globally by 2050 to feed the world’s population…

But our current agricultural process is one of the biggest contributors to global warming. It emits more greenhouses gases than all the world’s cars combined and is a major consumer and polluter of our precious water resources.

Read more

Researchers design aqueous battery that stores solar energy better than current lithium technology.

Batteries based on water that can store the electricity that we generate from solar technology? It can now be done.

Researchers at Ohio State University have designed a device with an aqueous flow battery that is based on water as opposed to the standard lithium design of your average rechargeable batteries. It is the first aqueous flow battery to work with a solar cell and it is 20 percent more efficient than the lithium design.

Read more

The future frontier for hackers is synthetic biology.


Landmark scientific projects such as the Human Genome Project can encourage international cooperation and bring nations together. However, when security interests and defence research align with the prestige of a landmark project—international competition is all but assured. Synthetic biology is a scientific discipline less than a decade old, and the potential defence and security applications may create a new space race, this time between the USA and China.

The larger concern is not that this race may happen, but that if it does it will politicise and militarise an ethically sensitive area of the life sciences at a time when this frontier technology is critical to maintaining a sustainable world.

The Human Genome Project (HGP) cost about US$300 million (A$394 million), involved 20 international institutions and sequenced the human genome in just over a decade. The draft sequence was published in February 2001 and has driven economic, health and social benefits the world over for the last 15 years. To a very large extent this research project underpins the modern life sciences and is the equivalent of landing on the moon.

Read more

Scientists from the University of Southampton have reengineered the fundamental process of photosynthesis to power useful chemical reactions that could be used to produce biofuels, pharmaceuticals and fine chemicals.

Photosynthesis is the pivotal biological reaction on the planet, providing the food we eat, the oxygen we breathe and removing CO2 from the atmosphere.

Photosynthesis in plants and algae consists of two reactions, the light-reactions absorb light energy from the sun and use this to split water (H2O) into electrons, protons and oxygen and the dark-reactions which use the electrons and protons from the light reactions to ‘fix’ CO2 from the atmosphere into simple sugars that are the basis of the food chain. Importantly, the light reactions have a much higher capacity than the dark reactions resulting in much of the absorbed being wasted as heat rather than being used to ‘fix’ CO2.

Read more

Scientists at the Energy Department’s National Renewable Energy Laboratory (NREL) discovered a use for perovskites that runs counter to the intended usage of the hybrid organic-inorganic material.

Considerable research at NREL and elsewhere has been conducted into the use of organic-inorganic hybrid perovskites as a solar cell. Perovskite systems have been shown to be highly efficient at converting sunlight to electricity. Experimenting on a lead-halide perovskite, NREL researchers found evidence the material could have great potential for optoelectronic applications beyond photovoltaics, including in the field of quantum computers.

Today, Nature Communications published the research, Large Polarization-Dependent Exciton Optical Stark Effect in Lead Iodide Perovskites. Authors of the paper are Ye Yang, Mengjin Yang, Kai Zhu, Justin Johnson, Joseph Berry, Jao van de Lagemaat, and Matthew Beard.

Read more

Autonomous Solutions Incorporated has revealed Case IH – the concept robo-tractor at The Farm Progress Show – showing off its nifty extras including cameras, radar and sensors that allow the farmer to control the tractor remotely using a tablet.

via GIPHY

Read more

As part of its new plan to build 2 to 3 million all-electric cars a year and unveil 30 new models by 2025, Volkswagen announced that they plan to debut one of these 30 new electric car models at the Paris Motor show next month.

VW CEO Hebert Diess confirmed the news in an interview with German magazine Wirtschafts Woche.

He said that the vehicle will achieve a range of 400 to 600 km (248 to 372 miles), but he could have been referring to the New European Driving Cycle (NEDC), which is much more forgiving than the EPA rating and doesn’t really reflect real-world range, but a range of ~300 miles sounds likely.

Read more