Toggle light / dark theme

I read all the news about SpaceX’s Falcon 9 latest “failure” to land on an autonomous spaceport drone ship aka barge. I view these as trials to success. Here’s why.

1. Grasshopper Successes: The two videos below show that the early landing trials aka Grasshopper from several heights between 250m and 1,000m.

The lessons here are:

a) Pinpoint landing of a 1st stage rocket is technologically feasible.

b) This 1st stage rocket has to attain zero vertical velocity at a minimum 250m above the barge.

Video of 250m test

Video of 1,000m test

2. Falcon 9 1st stage crash landing — 1st attempt: SpaceX tells us that the failure was due to a hard landing (see video below) but at 0:03 minutes into the video one can see that the 1st stage has substantially tilted before it hit the deck i.e. the 1st stage did not tilt because it hit the deck.

The lessons here:

a) A wobble — a dynamic instability — occurs before landing.

b) The guidance systems are unable to cope with new wobble.

Video of 1st attempt

3. Falcon 9 1st stage crash landing — 2nd attempt: The video of the second attempt (below) confirms that indeed a wobble has been introduced before the stabilization fins are deployed. Further, this deployment exacerbates the wobble, and the guidance systems is unable to handle this exacerbated wobble.

The lessons here:

a) 1st stage vertical velocity needs to be zero by at least 250m above deck.

b) The stabilization fins need to be redesigned to alleviate exacerbation.

c) Like the Space Ship One’s shuttlecock approach, the 1st stage upper fins need to be deployed before the lower fins are.

d) Upgrade the landing guidance system to account for more severe wobbles.

If at a minimum, SpaceX achieves zero velocity at 250m before deployment of landing gear it will be successful. The other recommendations are good to have.

I expect SpaceX to be successful by their 3rd try.

Vivian Giang | Quartz


“‘Mars has been unanimously agreed upon by the world’s space agencies as the ‘horizon goal’ for human spaceflight,’ said Do, part of the MIT research group responsible for a widely read report debunking Mars One’s mission as unfeasible. ‘It is widely agreed that Mars is the most promising destination for near term colonization.’” Read more

By — Clapway

Travel To Mars

The VASIMR Spaceship Engine or Variable Specific Impulse Magnetoplasma Rocket is the first of its kind that can take people to Mars in just 39 days, compared to 270 days that it would take with a regular spaceship. It is made by Ad Astra Rocket Company and, if all goes well, should definitely shake up the space travel industry.

VASIMR Spaceship Engine Technology

The VASIMR Spaceship Engine as seen at Ad Astra Rocket uses unique technology in order to reach the high speeds that are necessary to take people to Mars in a very short period of time. It uses a plasma-based propulsion system along with an electric power source in order to fuel said plasma. By fueling the plasma in the right direction, it will propel the engine in that direction as it’s being ejected from the ship.

This mission is part of Ad Astra Rocket Company’s idea to help with the upgrading of current spaceship technology so that deep space missions in the future would not take nearly as long if there were to be humans sent out to different planets. Read more

A realistic and desirable human destination would produce a different space program than what we have today.

“We reach for new heights and reveal the unknown for the benefit of humankind.” This is NASA’s Vision Statement. This is NASA’s reason for being, its purpose. This is a vision statement for science and knowledge. This vision statement was crafted in a solar system that has only one planet that is environmentally friendly to human life.

Thanks to the ongoing search for exoplanets, we’ve identified several planets in our galaxy that are Earth sized and in their star’s habitable zone. Based on statistics, potentially billions more are waiting to be found. We are just now developing the technology to detect them. But we’re nowhere near having the technology needed to get to visit them. They are simply too far away.

Now here is where I’d like to pose a what if question: What if there was another habitable planet just like Earth, right here in our own solar system? What would Earth’s space programs look like, if anyone with a good telescope could look up and see another world with oceans, and continents, and clouds, and green forests? I think that it is safe to say that space programs in this imaginary solar system would be vastly different than ours today. This is conjecture, but it seems likely that the vision statement above, would be more in line with making that new world available for humanity.

Of course the key difference between our present reality and this imaginary scenario is the existence of an obviously desirable destination relatively close by to Earth. This lack of obviously desirable destinations has shaped space programs into the form we see them today. The science oriented form described in the current NASA vision statement is a good example.

It has been said that leadership begins with a vision. To be compelling, a vision describes a desirable end state to be obtained. In the case of the fictional scenario with another Earth like planet in the solar system, that leadership vision might include making it possible for people to move freely to this new world.

As an analogy, in the mid 1800’s, the transcontinental vision (paraphrased) was to secure the U.S. position on the Pacific through a speedy and direct means of travel from one coast to the other. That vision did not include establishing and building the city of San Francisco! The prior existence of San Francisco, enabled the vision of a transcontinental railroad.

Since our situation lacks a visible desirable destination, a bit more effort is required in the vision department. We know that the solar system contains all the resources we need in order to construct vast places for people to live. Immense structures with forests, streams and farmland as advocated by Dr. Gerard O’Neill back in the 1970’s are all possible. We can achieve the same vision of having another habitable planet in this solar system, we just have to add the intermediate step of a vision to develop the manufacturing capability to construct our own desirable destinations!

Using the transcontinental vision as a guide, it is premature for the space vision to focus on sending millions of people out into space, since apart from the International Space Station, there are no destinations yet! No, to get to the transcontinental vision for space, we first need a vision of building a San Francisco in space! But in order for that vision to be considered, it must be realistic. The focus would be on developing the tools and robots necessary to rapidly and economically build up in-space manufacturing industries that can begin the construction of the first villages that will grow into the human cities.

Even though we do not have another Earth in our solar system, it is possible to envision the creation of other Earth equivalents. This leap in leadership would produce a vision unlike what we have now. This new vision, focused on manufacturing and development utilizing the resources of our solar system, would empower capabilities for even greater accomplishments in the future.

By: Leigh Cooper — Inside Science
Novel technologies, innovative engineering and breathtaking discoveries could be the story of the next 100 years of space exploration. But space travel involves more than math, telescopes and rovers according to the speakers at a session at last month’s annual meeting of the American Association for the Advancement of Science in San Jose, California. Modern space exploration mixes together governments and private companies, science and ethics, promise and possibilities.

Chris Impey, an astronomer at the University of Arizona in Tucson, thinks that the desire to explore, which has pushed humans to cross oceans and conquer mountains, will continue to propel humans into space.

“I think what is happening now is as profound as the transition that took place among hunter gatherers when they left Africa 50 or 60 thousand years ago,” said Impey. “It took an amazing short time – just a couple hundred generations – for simple tribal units of 50 or 100 to spread essentially across the Earth.“Read more

One of the things that I’ve always liked about Star Trek, is the concept of a galaxy spanning civilization. I would expect that before we ever get to that point, we will have a civilization that spans our solar system. Having a solar system spanning civilization has many advantages. It would give us access to resources many times greater than what is found here on Earth. It also provides the opportunity for civilization to expand, and in a worst case scenario, help ensure the survival of humanity.

Millions of people living in spacious environmentally controlled cities on planetary surfaces and in rotating cylinders in free space, with industry that extends from Mercury to the comets is to me, a grand vision worthy of an ambitious civilization. But trying to make that vision a reality will be difficult. The International Space Station has the capacity to house just six people and cost approximately $100B to put in place. With a little simple division, that works out to about $17B per inhabitant! If we used that admittedly crude figure, it would cost $17 trillion to build a 1,000 person habitat in Earth orbit. Clearly, the approach we used to build the ISS will not work for building a solar system civilization!

The ISS model relies on building everything on Earth, and launching it into space. A different model championed by Dr. Philip Metzger, would develop industrial capacity in space, using resources close to home, such as from the Moon. This has the potential to greatly reduce the cost of building and maintaining systems in space. But how to develop that industrial capacity? Remember we can’t afford to launch and house thousands of workers from Earth. The answer it would seem, is with advanced robotics and advanced manufacturing.

But is even this possible? The good news is that advanced robotics and advanced manufacturing are already being rapidly developed here on Earth. The driver for this development is economics, not space. These new tools will still have to be modified to work in the harsh environment of space, and with resources that are different from what are commonly used here on Earth. While learning to adapt those technologies to the Moon and elsewhere in the solar system is not trivial, it is certainly better that having to develop them from scratch!

Advanced robots are already having a very positive impact on our economy and play a significant role in what is referred to as next shoring. Next shoring is the move to bring manufacturing closer to the customer. For U.S. customers, that means the return of manufacturing to the U.S. This only makes business sense if the manufacturing costs are as low or lower here, than elsewhere. It is evident that the labor share of manufacturing is lower in those countries that have a high degree of automation. We are getting closer and closer to the cost of materials and transportation being the main drivers in manufactured goods. This is just what we would like to see happen for our solar system civilization. Developing materials and transportation systems from local resources through automation will drive down the cost of opening up the solar system.

While this is great news for developing space, there are implications for our terrestrial civilization. Remember the push for automation in manufacturing isn’t driven by a space need, it is driven by Earthly economics. That means getting to market faster with a better product and at a lower cost. The implication to our terrestrial civilization is twofold. First, manufacturing corporations see greater productivity per employee. This makes sense in that you can increase productivity by adding robots while maintaining or even reducing the workforce. This equates to greater profits and happier shareholders! The downside of that increased productivity however, is a reduction in job growth, if not an outright decline. The very technologies that will make a solar system civilization possible may very well stifle the job market here.

Are people worried about this? You bet they are! This issue became apparent at the 2015 SXSW Festival in Texas. At that event a protest (a staged marketing stunt as reported in IO9) to “stop the robots,” occurred. Much to the surprise of the organizers, this protest generated a lot more attention than they planned, and was picked up by multiple news organizations. It would seem that this interest is driven by very real personal concerns that people have about losing jobs to robots.

Now this is where things get interesting. Economics is driving the development of advanced robots. These advanced robots enable space development but can potentially hurt the job market. From a systems viewpoint, we cannot champion the arrival of advanced robots as a boon for both industry and space development, without considering the potential downside.

People need jobs, and not surprisingly, they particularly like important work. We need to welcome the benefits that advanced robotics bring and at the same time, we need to be proactive in stepping up to the challenges that come along with the benefits. There are lots of ways to address this issue, but it is apparent from the concern shown at SXSW, that this is a conversation that needs to begin sooner rather than later.

We do live in a changing world, which is changing at an ever increasing pace. As leaders, we can chose to either react to the changes being brought on by a growing robotic workforce, or we can chose to lead the transformation of our institutions to successfully accommodate that change. If we chose to lead, the first step, as identified by Professor John Kotter, is a sense of urgency. That sense seems already to be building. Next steps are to develop a vision for ways to accommodate the necessary changes, and building coalitions necessary to implement it. It might be wise to start looking at these steps now.

Like any complex problem, multiple approaches will most likely be needed in order to address workforce disruption. With broad discussion, planning and leadership now, we can mitigate the downside issues, while enabling a strengthened economy now and a bright future among the stars.

Mark

CoverThumbnailTitle: Super Physics for Super Technologies
Sub Title: Replacing Bohr, Heisenberg, Schrödinger & Einstein
Author: Benjamin T Solomon
Paperback: 154 pages
Publisher: Propulsion Physics, Inc. (March 19, 2015)
ISBN-10: 1508948011
ISBN-13: 978–1508948018
Language: English

Publisher’s Link: Super Physics for Super Technologies
Amazon’s Link: Super Physics for Super Technologies

Reviewer’s comments: “Benjamin is the second researcher I have met who has tried to consider a nonsingular cosmology. The first was Christi Stoica, which I met in 2010″.
Andrew Beckwith PhD

The Objective: This book, Super Physics for Super Technologies, proposes that a new physics exists. The findings are based on 16 years of extensive numerical modeling with empirical data, and therefore, both testable and irrefutable.

The Need: In 2012 Prof. Nemiroff, using Hubble photographs, showed that quantum foam cannot exists. In 2013, Solomon showed that both exotic matter and strings could not exists. In 2015 the Kavli Foundation, with Prof. Efstathiou, Prof. Pryke, Prof. Steinhard discussed the issues with the Planck Space Telescope findings of a Universe that is significantly simpler than our theories. Therefore the need for new physics.

The Benefits: The replacement of the Schrödinger wave function with a simpler probabilistic wave function, results in a new electron shell model based on the Rydberg equation, giving exact results with quantum mechanics; leading to a new Standard Model and the unification of photon shielding, transmission and invisibility as the same phenomenon. Solomon’s inference is that any current or future stealth technology can be neutralized.

The Possibilities: Is it possible to rewrite physics and the old great cherished masters? This work is based on extensive numerical modeling of known empirical data and theorizing. Therefore, the answer must be YES.

Acknowledgements: I would like to thank Lockheed for nominating me to the position of Committee Member, Nuclear and Future Flight Propulsion Technical Committee, American Institute of Aeronautics & Astronautics (AIAA)

By Jason Dorrier — Singularity Hubhttp://cdn.singularityhub.com/wp-content/uploads/2015/02/sci-fi-sunday-2-1000x400.jpg

The desolate reaches of deep space figure heavily in today’s sci-fi short film double feature. Space, as it turns out, is really big and empty. Until we get warp drive or discover a local wormhole—getting anywhere will be a long, lonely slog. The other thread tying the films together? They’re both by director Eli Sasich.

First up is HENRi. The film is like an episode of Life After People in space. What happens to a ship’s artificially intelligent computer after its crew dies? It gets melancholy, begins missing its human friends something terrible, and builds itself a robot body out of the ship’s rusty scrap and spare parts.

“My particular interest for this film was memory and its intrinsic relationship with consciousness,” Sasich writes in an article about the film’s making. “I also wanted a robot of my very own.”

Read more

International Audacious SpaceInitiative Partners with Brussels-Based ISC Intelligence to Support EU’s Horizon 2020 Research and Innovation Goals to Meet Global Challenges on Earth

BRUSSELS/HOUSTON, March 5, 2015100 Year Starship™ (100YSS™), an independent, long-term global initiative working to ensure that the capabilities for human interstellar travel, beyond our solar system to another star, exist within the next 100 years today announced the establishment of its hub in the European Union. The inaugural 100YSS@EUä Hub debuted at the ES:GC2 (European Science: Global Challenges Global Collaboration) Conference held by the Brussels partner ISC Intelligence.

The 100YSS@EU Hub will further the 100YSS mission and facilitate robust transatlantic and international collaboration in research and innovation, science, technology, engineering, and mathematics (STEM) capacity building, entrepreneurship and education projects between organizations, companies, universities and individuals, as well as support the objectives of the EU’s Horizon 2020. The U.S.-based 100YSS began with a competitive seed-funding grant from DARPA (Defense Advanced Research Projects Agency).

Horizon 2020 is the largest EU Research and Innovation programme ever and is aimed at implementing the Innovation Union, a Europe 2020 flagship initiative designed to secure Europe’s global competitiveness.

The 100YSS@EU HUB, a partnership between 100YSS and ISC Intelligence in Science, a Brussels-based science and technology public policy firm, will support the European Union’s commitment to enable European competitiveness, non-dependence, and innovation in space activities and the application of space exploration technologies to address many of the global challenges confronting the world today.

“As history has proven, when we explore space, we garner the greatest benefits here at home—witness the widespread use of GPS, weather data, remote sensing for farming, MRI scans,” said former NASA astronaut, engineer and physician Dr. Mae Jemison, who leads 100YSS. “The raison d’etre of 100YSS is to foster radical leaps in knowledge, technology design, and human systems by using the framework of human interstellar travel to enhance life on earth.”

“The challenges we face travelling beyond our solar system to another star – be it energy, massive data handling, sustainable agriculture, education, financial infrastructure, life support, governance or recyclable clothing — will generate transformative research, knowledge, technology and solutions that will dramatically benefit every nation on Earth in the near term and years to come.”

“The European Union has identified space as a key programme area in Horizon 2020. Building the kind of robust space enterprise the EU envisions, requires transatlantic science collaboration, the very potent ingredient the 100YSS@EU HUB offers us,” said Declan Kirrane, Managing Director, ISC Intelligence in Science.

According to Kirrane, the 100YSS@EU Hub will support the EU’s research and exploration projects through a variety of initiatives. They include collaborative international projects in basic sciences and cutting edge space technology and their commercial application including in developing countries; support of bold STEM initiatives such as R&D and innovation accelerator centers; transdisciplinary programs and workshops; international advocacy and best practice STEM education programs; and robust outreach that galvanizes public support.

The 100YSS@EU Hub marks the first such Hub created by 100YSS. Another Hub is soon to be established in South Africa with the Da Vinci Institute.

Both Hubs are part of a global network of research and innovation centers 100YSS is building whose activities include transatlantic collaborations and partnerships with Africa and other emerging regions. The centers partner with governments, industry, academia, and social sector organizations worldwide.

Led by Dr. Jemison, 100YSS is an inclusive initiative. It fosters an approach that first recognizes and then both optimally employs and develops the skills, talents, expertise and perspectives of individuals across gender, ethnicity, race, geography and disciplines. As the first African American woman to travel in space (1992’s Space Shuttle Endeavour), Dr. Jemison brings to her leadership role her vast experience as an engineer, physician, former Peace Corps medical officer, and entrepreneur. Jemison is joined in 100YSS by an impressive cadre of physical, life and social scientists, engineering researchers, entrepreneurs, policy experts, educators and university professors, media professionals, writers and artists.

ABOUT 100 YEAR STARSHIP

100 Year Starship® (100YSS), an independent, non-governmental, long-term initiative to ensure the capabilities for human interstellar flight exist as soon as possible, and definitely within the next 100 years. 100YSS was started in 2012 with seed-funding through a competitive grant from DARPA (Defense Advanced Research Projects Agency) and support from NASA (National Aeronautics and Space Administration) for the purpose of fostering the type of explosive innovation and technology and social advances born from addressing such an incredible challenge. 100YSS is part of the Dorothy Jemison Foundation for Excellence. For more information, visit www.100yss.org.

On social media:

Facebook: www.facebook.com/100YearStarship

Twitter: @100YSS

ABOUT ISC Intelligence

ISC is a Brussels-based communication firm specialized in science, technology and R&D research and policy. ISC provides intelligence on science and innovation policy and programs and has over a decade of experience in science communication at the European and international levels. For more information, visit http://www.iscintelligence.com/.

On social media:

Twitter: @iscintelligence

ISC Contact:

Declan Kirrane

ISC Intelligence in Science

[email protected]

+32 (0) 2 88 88 109

www.iscintelligence.com

100YSS Contact:

Stephanie Hornback/Cynthia Carway

Carway Communications, Inc.

[email protected]

212−378−2020

By — Singularity Hub
http://cdn.singularityhub.com/wp-content/uploads/2015/02/moon-mining-water-1-1000x400.jpg

As a kid, I devoured Star Trek: The Next Generation, and though it now appears nearly as campy as the original series did back then, I still love it. But Star Trek led me astray. I thought exploration for the sake of exploration would get us to the stars. Now, I’m not so sure. Fifty years in, and we humans are still stuck in low-Earth orbit.

First comes a smattering of fiery idealists blazing trails and climbing peaks. The risks are high and the returns are individual fame, newly detailed maps, and a general sense of awe.

Read more