Toggle light / dark theme

Tongue piercing

Body piercings have been used to control wheelchairs and computers in a move scientists believe could transform the way people interact with the world after paralysis.

The movement of a tiny magnet in a tongue piercing is detected by sensors and converted into commands, which can control a range of devices.

The US team said it was harnessing the tongue’s “amazing” deftness.

The development is reported in the journal Science Translational Medicine.

The team at the Georgia Institute of Technology made the unlikely leap from body art to wheelchairs because the tongue is so spectacularly supple.

A large section of the brain is dedicated to controlling the tongue because of its role in speech. It is also unaffected by spinal cord injuries that can render the rest of the body paralysed, tetraplegic, as it has its own hotline to the brain.

“We are tapping in to the inherent capabilities of the tongue, it is such an amazing part of the body,” Dr Maysam Ghovanloo told the BBC.

Read more

A University of Alabama at Birmingham (UAB) surgical team has performed one of the first surgeries using a telepresence augmented reality technology from VIPAAR in conjunction with Google Glass.

The combination of the two technologies could be an important step toward the development of useful, practical telemedicine.

VIPAAR (Virtual Interactive Presence in Augmented Reality) is commercializing a UAB-developed technology that provides real-time, two-way, interactive video conferencing.

Read more

The GE90 is one of the world’s most powerful jet engines. GE plans to produce 100,000 3D-printed components for the next-generation GE9X and Leap models

General Electric (GE), on the hunt for ways to build more than 85,000 fuel nozzles for its new Leap jet engines, is making a big investment in 3D printing. Usually the nozzles are assembled from 20 different parts. Also known as additive manufacturing, 3D printing can create the units in one metal piece, through a successive layering of materials. The process is more efficient and can be used to create designs that can’t be made using traditional techniques, GE says. The finished product is stronger and lighter than those made on the assembly line and can withstand the extreme temperatures (up to 2,400F) inside an engine. There’s just one problem: Today’s industrial 3D printers don’t have enough capacity to handle GE’s production needs, which require faster, higher-quality output at a lower cost.

Continue Reading

In the next five years, the Internet retail giant expects to use small drones to deliver packages to customer doorsteps within 30 minutes of their order.

Amazon CEO Jeff Bezos shows Charlie Rose prototypes of the delivery drones.

Amazon is testing a delivery service that uses drones to deliver packages within 30 minutes of an order being placed.

Dubbed Amazon PrimeAir, the service uses 8-propeller drones about the size of a remote-controlled airplane to transport shoe-box-size plastic bins from fulfillment centers to customers’ homes. The service, which still requires more testing and clearance from the Federal Aviation Administration, could take to the skies as soon as four to five years, Amazon CEO Jeff Bezos told Charlie Rose during an interview Sunday on “60 Minutes.”

The completely unmanned aerial vehicles rely on GPS to deliver their cargo, Bezos explained during the segment (see below), which included an Amazon film of the drones in action.

“I know this looks like science fiction — it’s not,” Bezos said.

Continue reading

Supermanagement! by Mr. Andres Agostini (Excerpt)

DEEPEST

“…What distinguishes our age from every other is not the world-flattening impact of communications, not the economic ascendance of China and India, not the degradation of our climate, and not the resurgence of ancient religious animosities. Rather, it is a frantically accelerating pace of change…”

Read the entire piece at http://lnkd.in/bYP2nDC

The Lifeboat community doesn’t need me to tell them that a growing number of scientists are dedicating their time and energy into research that could radically alter the human aging trajectory. As a result we could be on the verge of the end of aging. But from an anthropological and evolutionary perspective, humans have always had the desire to end aging. Most human culture groups on the planet did this by inventing some belief structure incorporating eternal consciousness. In my mind this is a logical consequence of A) realizing you are going to die and B) not knowing how to prevent that tragedy. So from that perspective, I wanted to create a video that contextualized the modern scientific belief in radical life extension with the religious/mythological beliefs of our ancestors.


And if you loved the video, please consider subscribing to The Advanced Apes on YouTube! I’ll be releasing a new video bi-weekly!

(Excerpt)

Beyond the managerial challenges (downside risks) presented by the exponential technologies as it is understood in the Technological Singularity and its inherent futuristic forces impacting the present and the future now, there are also some grave global risks that many forms of management have to tackle with immediately.

These grave global risks have nothing to do with advanced science or technology. Many of these hazards stem from nature and some are, as well, man made.

For instance, these grave global risks ─ embodying the Disruptional Singularity ─ are geological, climatological, political, geopolitical, demographic, social, economic, financial, legal and environmental, among others. The Disruptional Singularity’s major risks are gravely threatening us right now, not later.

Read the full document at http://lnkd.in/bYP2nDC

Most of us know helium as that cheap inert lighter-than-air gas we use to fill party balloons and inhale to increase voice-pitch as a party trick for kids. However, helium has much more important uses to humanity — from medical (e.g. MRIs), military and defense (submarine detectors use liquid helium to clean up noisy signals), next-generation nuclear reactors, space shuttles, solar telescopes, infra-red equipment, diving, arc welding, particle physics research (the super-magnets in particle colliders rely on liquid helium), the manufacture of many digital devices, growing silicon crystals, the production of LCDs and optical fibers [1].

The principal reason helium is so important is due to its ultra-low boiling-point and inert nature making it the ultimate coolant of the human race. As the isotope helium-3, helium is also used in nuclear fusion research [2]. However, our Earth supplies of helium are being used at an unprecedented rate and could be depleted within a generation [4] and at the current rate of consumption we will run out within 25 to 30 years. As the gas is often thought of as a cheap gas it is often wasted. However, those who understand the situation, such as Prof Richardson, co-chair of a recent US National Research Council inquiry into the coming helium shortage, warn that the gas is not cheap due to the supply being inexhaustible, but because of the Helium Privatisation Act passed in 1996 by the US Congress.

Helium only accounts for 0.00052% of the Earth’s atmosphere and the majority of the helium harvested comes from beneath the ground being extracted from minerals or tapped gas deposits. This makes it one of the rarest elements of any form on the planet. However, the Act required the helium stores [4] held underground near Amarillo in Texas to be sold off at a fixed rate by 2015 regardless of the market value, to pay off the original cost of the reserve. The Amarillo storage facility holds around half the Earth’s stocks of helium: around a billion cubic meters of the gas. The US currently supplies around 80 percent of the world’s helium supplies, and once this supply is exhausted one can expect the cost of the remaining helium on Earth to increase rapidly — as this is in all practicality quite a non-renewable resource.

There is no chemical way of manufacturing helium, and the supplies we have originated in the very slow radioactive alpha decay that occurs in rocks. It has taken 4.7 billion years for the Earth to accumulate our helium reserves, which we will have exhausted within about a hundred years of the US’s National Helium Reserve having been established in 1925. When this helium is released to the atmosphere, in helium balloons for example, it is lost forever — eventually escaping into space [5][6]. So what shall we do when this crucial resource runs out? Well, in some cases liquid nitrogen (−195°C) may be adopted as a replacement — but in many cases liquid nitrogen cannot be used as a stand alone coolant as tends to be trickier to work with (triple point and melting point at around −210°C) — so the liquid helium is used because it is capable of staying liquid at the extreme cool temperatures required. No more helium means no more helium liquid (−269°C) that is used to cool the NMR (nuclear magnetic resonance apparels), and in other machines such as MRI scanners. One wonders therefore must we look towards space exploration to replenish our most rare of resources on Earth?

Prepare Uranus - A view of Uranus

Helium is actually the second most abundant resource in the Universe, accounting for as much as 24 percent of the Universe’s mass [7] — mostly in stars and the interstellar medium. Mining gas giants for helium has been proposed in a NASA memorandum on the topic [8] which have also have great abundance of this gas, and it has been suggested that such atmospheric mining may be easier than mining on the surfaces of outer-planet moons. While this had focused on the possibility of mining Helium-3 from the atmosphere of Jupiter, with inherent complications of delta-V and radiation exposure, a more appropriate destination for mining regular helium may rest with the more placid ice-giant Uranus (not considered in the memorandum as the predicted concentration of Helium-3 in the helium portion of the atmosphere of Uranus is quite small). Leaving aside specific needs for Helium-3 which can be mined in sufficient volume much closer — on our Moon [9], a large-scale mining mission to Uranus for the more common non-radioactive isotope could ensure the Earth does not have to compromise so many important sectors of modern technology in the near future due to an exhaustion of our helium stock. A relatively lower wind speed (900 km/h, comparing favorably to 2,100 km/h on Neptune), with a lower G-force (surface gravity 0.886 g, escape velocity 21.3 km/s) [10] and an abundance of helium in its atmosphere (15 ± 3%) could make it a more attractive option, despite the distances (approx 20 AU), extreme cold (50-70K) and radiation belts involved. Rationalising complexities in radiation, distance, time and temperatures involved for human piloting of such a cargo craft, it could be considered more suited to an automated mission, remote-controlled under robotics similar to orbiter probes — even though this would introduce an additional set of challenges — in AI and remote control.

However, we have a Catch 22 — NASA space programs use the gas to aid their shuttles [12]. Liquid fuels are volatile. They are packed with corrosive material that could destroy a spacecraft’s casing. To avoid this problem, a craft is filled with helium gas. If this could be replaced in such shuttles with some alternative, and advances in space transportation made to significantly increase the cargo of such ships over interplanetary-distances, perhaps a case could be made for such ambitious gas mining missions, though at present given current NASA expenditure, this would seem like fantasy [13]. Realistic proposals for exploration of Uranus [14] fall far short of these requirements. Helium is a rare and unique element we need for many industrial purposes, but if we don’t conserve and recycle our helium, we are dooming mankind to a future shortage of helium, with little helium left for future generations here on Earth [15] — as for now, replenishing such from space seems like a rather long shot.

————————————————

[1] 8 Surprising High-Tech Uses for Helium — TechNewsDaily
http://www.technewsdaily.com/5769-8-surprising-high-tech-helium.html
[2] Helium-3 as used in Nuclear Fusion Research
http://en.wikipedia.org/wiki/Helium-3
[3] The world is running out of helium — Nobel prize winner Prof Robert Richardson.
http://phys.org/news201853523.html#jCp
[4] The Federal Helium Reserve
http://www.blm.gov/nm/st/en/prog/energy/helium/federal_helium_program.html
[5] Why the World Will Run Out of Helium
http://scienceblogs.com/startswithabang/2012/12/12/why-the-world-will-run-out-of-helium/
[6] Will We Run Out of Helium?
http://chemistry.about.com/b/2012/11/11/will-we-run-out-of-helium.htm
[7] Where Is Helium Found — Universe Today

Where is Helium Found


[8] Bryan Palaszewski. “Atmospheric Mining in the Outer Solar System“
http://www.grc.nasa.gov/WWW/RT/2005/RT/RTB-palaszewski1.html
[9] Mining the Moon for Helium-3 — RocketCitySpacePioneers
http://www.rocketcityspacepioneers.com/space/mining-the-moon-for-helium-3
[10] Uranus — Physical characteristics
http://en.wikipedia.org/wiki/Uranus
[11] Uranus’s Magnetosphere — NASA Voyager VPL
http://voyager.jpl.nasa.gov/science/uranus_magnetosphere.html
[12] Space shuttle use of propellants and fluids — NASA KSC
http://www-pao.ksc.nasa.gov/kscpao/nasafact/pdf/ssp.pdf
[13] Project Icarus: The Gas Mines of Uranus
http://news.discovery.com/space/project-icarus-helium-3-mining-uranus-110531.htm
[14] The case for a Uranus orbiter, Mark Hofstadter et al.
http://www.lpi.usra.edu/decadal/opag/UranusOrbiter_v7.pdf
[15] Why the World Will Run Out of Helium
http://scienceblogs.com/startswithabang/2012/12/12/why-the-world-will-run-out-of-helium/

When a programmer begins to write his code, he is not merely writing abstract messages to be translated into simple ones and zeros but creating a carefully detailed dance pattern between him and his machine. At the moment of powering up his computer and watching it boot up with controlled anticipation, he is watching decades of digital choreography come to play in front of his eyes. This dazzling spectacle is the threshold of where his creative energies take place. This is where his mind goes to work in creating precise and detailed instructions for his machine to put into action. This may be true but to the true programmer, one who puts his heart and soul into his keyboard and pushes his combined passion and creativity to the next level, is the one who truly masters the art and becomes legendary. To these people, they are not merely writing code but are creating art that comes alive at the push of a button. This is one aspect of programming that a computer jockey wishes to do: create art.

The arena that a programmer wishes to dance in is always at his discretion. Be it Eclipse, Visual Basic, or even a simple word processor, they all have their merits. This is where the artist creates. This is where the programmer takes their initial keystrokes and gingerly pecks at them with blazing speed and mechanical accuracy. To those around him, the programmer appears to be rushing to complete task but this is not the case. To those who program and write code, time seems to stand still as they carefully work on their masterpiece. They put all other issues aside and commit their time and energy into designing their next creation, their new child. They take pleasure in their work and commit much of their lives to perfecting this art and designing innovative creations. To them, this in itself is a dance within the massive operating system and their dance partner is the code itself. Around the duo is a multitude of processes, other couples composed of daemons that maintain a proper status quo and the many parent/child processes around. This may not be a dance for them, but a dance made possible by love and circuitry. This dance is beautiful, but one careless misstep will cause the fellow dancer to become dissatisfied and will refuse to dance. Even though the code may be your child, your child is a picky creature that is only satisfied by the successive combination of accuracy and precision.

After the dance is complete and with all syntax as elegant as a well-played ballad, the debugger shall take hold of the remaining tasks. She is a lovely creature that plays as the nurse for your newly born child. She makes sure that your child is flawless and only speaks when she has found your child to be defective. If this occurs, the dance resumes and the creator begins again. As one ages with time, one should strive to become perfect or to work hard enough to write perfect code. After the debugger has nursed your child into being, with one keystroke she comes alive and begins to speak with you. She will be as intelligent as you make her and as resourceful as you are, only to make as many mistakes as you made in your dance. She is a loyal child, one that completes every task that you ask of her. Your child’s only request is that you keep her safe and to give her the resources she needs. When this criterion isn’t met, she will become unhappy and will refuse to help you. Rather than showing rage and frustration, the artist must be patient and be giving to the child.

With the creation of a new child, a responsible artist will show her to the world and allow others to share similar experiences that the programmer has had. Others will shelter the child, making sure that their child will not be taken from them. The programmer must be smart, and must take protective measures to make sure this doesn’t happen. Some will ask outsiders for help, others will make sure that fellow digital craftsman will acknowledge that their child is theirs and only theirs. As with any parent, they will respect the programmer as they share the same vision and passion for the art as they do. As the programmer shows their child to the world, their child is able to help others and those in need. The programmer’s child will become another part of the user’s life as the child assists them with their needs. The programmer will take pride in their child for all the good their child has done. Eventually, other programmers will want to take the child and will execute a more intimate dance with her. This is most often out of your hands, so all you can do is hope that she is used for benevolent purposes only. This intimate dance will alter your child and create an offspring, a variant of your original design. This will continue ad infinitum until your child has aged to where she is no longer useful. With teary eyes and a heavy heart, the programmer will see his creation fade away from existence.

As many will undergo the intimate dance with your child, others will attempt to rape and defile your child with malicious code and devious intentions. Fueled by greed and an appetite for destruction, these infiltrators will use and abuse the child by exploiting her weaknesses and will corrupt her into a monstrosity capable of numerous problems for the programmer and others. These infiltrators are cunning, capable of taking the child and making her into a monster with the use of a single code. As with all artists and creators, one would hope that these nefarious individuals would be apprehended by the authorities but this is not always the case. Many of these fiends go unnoticed by hiding in plain sight, only conversing with others like them. This is not even the worst. The worst case scenario is that the child, a year’s worth of work in one result, can be defiled and used for creating a horrid abomination with the capacity of more harm than the child could ever accomplish. One could only hope that this never happens but often does more times than one could ever want. This is one negative consequence of creation; what one creates, another can destroy.

As true as in real life, there are more people willing to destroy than there are willing to create. Thankfully, creators and fellow programmers are not without protection. There are other programmers who create for the sake of creating other creators. These protectors create their own children with the intent of protecting them from those who want to corrupt them. These children are not made the same as other children, possessing code that is able to scan other children and safeguard them from harm. As with any program, they range from extremely potent to completely useless but they are all made with the best intentions. Often their designers are fellow artists that have the same concerns that any other programmer does but possess the knowledge to write code that is specifically designed to protect other programs from harm. All programmers lend their gratitude to the vanguards that keep them and their child safe from malicious individuals and criminals.

Like the continuous battle between infiltrators and protectors, other programmers tend to have their own battles. Their intentions are primarily material, fighting over the attention of users and other programmers. They will often steal from each other, use misconduct, and lie to consumers to meet their goals. These programmers are not fueled by the passion to create, but the passion to create profit. As such, their children are not filled with the love and passion that other children are filled with, but are utilitarians that do only what they are asked to do. These husks are often targeted by those who seek to defile them because they are not made with the careful craftsmanship of a passionate artist, but by the hands of greedy businessmen who are as careless as they are desperate for profit. This joke is as eternal as life itself and tends to be just as cruel.

As with any great artist, one does not stop with the creation of their child but will seek to improve her with time and carefully designed upgrades. These revisions serve the purpose of immortalizing the child and improving her like time and biology ages their fleshy counterparts. Unlike flesh children, a digital child can live forever with a continuing cycle of revision and constant upgrades. With a close eye to the voice of the users, a creator can design a child that can live forever by meeting the demands that a user asks for. These revisions can take the crude design of simple child and transfigure her into an elegant and omnipotent being that can tackle any challenge within their world. While these revisions take place, a programmer won’t stop with one creation but will create more and more programs. The constant drive to create, improve, and create again is what fuels the silicon and copper heart of a passionate programmer. This cycle will go on until the very programmer dies. The programmer will not have died without making an impact on the world and will have died doing what the programmer does best: create. With their work, the programmer is immortalized like their revised children.

At the end of the day, the programmer will power down their workstation and will rest for the next day to come. This will not be their final day of creation, for there are many other creations to come about and will beg to be created. Once again, the elegant digital waltz will begin again in the dance floor where all dances are conducted. The dance always has the same mechanical accuracy and precision as the first time it was enacted, the feverish pecking upon a keyboard to produce electrical impulses that result in ones and zeros. The important difference is that a new child is under construction, with a new set of objectives and tasks to complete. Of course, this is for another day and another time. The artist will click the shutdown icon, another beautifully crafted piece of code, and watch as the computer turns itself off. The daemons, parent, and child processes will rest until it is time for them to dance once again.

3j0evbm2zqijaw_small

Originally posted via The Advanced Apes

Through my writings I have tried to communicate ideas related to how unique our intelligence is and how it is continuing to evolve. Intelligence is the most bizarre of biological adaptations. It appears to be an adaptation of infinite reach. Whereas organisms can only be so fast and efficient when it comes to running, swimming, flying, or any other evolved skill; it appears as though the same finite limits are not applicable to intelligence.

What does this mean for our lives in the 21st century?

First, we must be prepared to accept that the 21st century will not be anything like the 20th. All too often I encounter people who extrapolate expected change for the 21st century that mirrors the pace of change humanity experienced in the 20th. This will simply not be the case. Just as cosmologists are well aware of the bizarre increased acceleration of the expansion of the universe; so evolutionary theorists are well aware of the increased pace of techno-cultural change. This acceleration shows no signs of slowing down; and few models that incorporate technological evolution predict that it will.

The result of this increased pace of change will likely not just be quantitative. The change will be qualitative as well. This means that communication and transportation capabilities will not just become faster. They will become meaningfully different in a way that would be difficult for contemporary humans to understand. And it is in the strange world of qualitative evolutionary change that I will focus on two major processes currently predicted to occur by most futurists.

Qualitative evolutionary change produces interesting differences in experience. Often times this change is referred to as a “metasystem transition”. A metasystem transition occurs when a group of subsystems coordinate their goals and intents in order to solve more problems than the constituent systems. There have been a few notable metasystem transitions in the history of biological evolution:

  • Transition from non-life to life
  • Transition from single-celled life to multi-celled life
  • Transition from decentralized nervous system to centralized brains
  • Transition from communication to complex language and self-awareness

All these transitions share the characteristics described of subsystems coordinating to form a larger system that solve more problems than they could do individually. All transitions increased the rate of change in the universe (i.e., reduction of entropy production). The qualitative nature of the change is important to understand, and may best be explored through a thought experiment.

Imagine you are a single-celled organism on the early Earth. You exist within a planetary network of single-celled life of considerable variety, all adapted to different primordial chemical niches. This has been the nature of the planet for well over 2 billion years. Then, some single-cells start to accumulate in denser and denser agglomerations. One of the cells comes up to you and says:

I think we are merging together. I think the remainder of our days will be spent in some larger system that we can’t really conceive. We will each become adapted for a different specific purpose to aid the new higher collective.

Surely that cell would be seen as deranged. Yet, as the agglomerations of single-cells became denser, formerly autonomous individual cells start to rely more and more on each other to exploit previously unattainable resources. As the process accelerates this integrated network forms something novel, and more complex than had previously ever existed: the first multicellular organisms.

The difference between living as an autonomous single-cell is not just quantitative (i.e., being able to exploit more resources) but also qualitative (i.e., shift from complete autonomy to being one small part of an integrated whole). Such a shift is difficult to conceive of before it actually becomes a new normative layer of complexity within the universe.

Another example of such a transition that may require less imagination is the transition to complex language and self-awareness. Language is certainly the most important phenomena that separates our species from the rest of the biosphere. It allows us to engage in a new evolution, technocultural evolution, which is essentially a new normative layer of complexity in the universe as well. For this transition, the qualitative leap is also important to understand. If you were an australopithecine, your mode of communication would not necessarily be that much more efficient than that of any modern day great ape. Like all other organisms, your mind would be essentially isolated. Your deepest thoughts, feelings, and emotions could not fully be expressed and understood by other minds within your species. Furthermore, an entire range of thought would be completely unimaginable to you. Anything abstract would not be communicable. You could communicate that you were hungry; but you could not communicate about what you thought of particular foods (for example). Language changed all that; it unleashed a new thought frontier. Not only was it now possible to exchange ideas at a faster rate, but the range of ideas that could be thought of, also increased.

And so after that digression we come to the main point: the metasystem transition of the 21st century. What will it be? There are two dominant, non-mutually exclusive, frameworks for imagining this transition: technological singularity and the global brain.

The technological singularity is essentially a point in time when the actual agent of techno-cultural change; itself changes. At the moment the modern human mind is the agent of change. But artificial intelligence is likely to emerge this century. And building a truly artificial intelligence may be the last machine we (i.e., biological humans) invent.

The second framework is the global brain. The global brain is the idea that a collective planetary intelligence is emerging from the Internet, created by increasingly dense information pathways. This would essentially give the Earth an actual sensing centralized nervous system, and its evolution would mirror, in a sense, the evolution of the brain in organisms, and the development of higher-level consciousness in modern humans.

In a sense, both processes could be seen as the phenomena that will continue to enable trends identified by global brain theorist Francis Heylighen:

The flows of matter, energy, and information that circulate across the globe become ever larger, faster and broader in reach, thanks to increasingly powerful technologies for transport and communication, which open up ever-larger markets and forums for the exchange of goods and services.

Some view the technological singularity and global brain as competing futurist hypotheses. However, I see them as deeply symbiotic phenomena. If the metaphor of a global brain is apt, at the moment the internet forms a type of primitive and passive intelligence. However, as the internet starts to form an ever greater role in human life, and as all human minds gravitate towards communicating and interacting in this medium, the internet should start to become an intelligent mediator of human interaction. Heylighen explains how this should be achieved:

the intelligent web draws on the experience and knowledge of its users collectively, as externalized in the “trace” of preferences that they leave on the paths they have traveled.

This is essentially how the brain organizes itself, by recognizing the shapes, emotions, and movements of individual neurons, and then connecting them to communicate a “global picture”, or an individual consciousness.

The technological singularity naturally fits within this evolution. The biological human brain can only connect so deeply with the Internet. We must externalize our experience with the Internet in (increasingly small) devices like laptops, smart phones, etc. However, artificial intelligence and biological intelligence enhanced with nanotechnology could form quite a deeper connection with the Internet. Such a development could, in theory, create an all-encompassing information processing system. Our minds (largely “artificial”) would form the neurons of the system, but a decentralized order would emerge from these dynamic interactions. This would be quite analogous to the way higher-level complexity has emerged in the past.

So what does this mean for you? Well many futurists debate the likely timing of this transition, but there is currently a median convergence prediction of between 2040–2050. As we approach this era we should suspect many fundamental things about our current institutions to change profoundly. There will also be several new ethical issues that arise, including issues of individual privacy, and government and corporate control. All issues that deserve a separate post.

Fundamentally this also means that your consciousness and your nature will change considerably throughout this century. The thought my sound bizarre and even frightening, but only if you believe that human intelligence and nature are static and unchanging. The reality is that human intelligence and nature are an ever evolving process. The only difference in this transition is that you will actually be conscious of the evolution itself.

Consciousness has never experienced a metasystem transition (since the last metasystem transition was towards higher-level consciousness!). So in a sense, a post-human world can still include your consciousness. It will just be a new and different consciousness. I think it is best to think about it as the emergence of something new and more complex, as opposed to the death or end of something. For the first time, evolution will have woken up.