Toggle light / dark theme

Pioneered by Erik Verlinde, the idea is that gravity emerges from a more fundamental phenomenon in the Universe, and that phenomenon is entropy.

“Sound waves emerge from molecular interactions; atoms emerge from quarks, gluons and electrons and the strong and electromagnetic interactions; planetary systems emerge from gravitation in General Relativity. But in the idea of entropic gravity — as well as some other scenarios (like qbits) — gravitation or even space and time themselves might emerge from other entities in a similar fashion. There are well-known, close relationships between the equations that govern thermodynamics and the ones that govern gravitation. It’s known that the laws of thermodynamics emerge from the more fundamental field of statistical mechanics, but is there something out there more fundamental from which gravity emerges? That’s the idea of entropic gravity.”

Entropic gravity, also known as emergent gravity, is a theory in modern physics that describes gravity as an entropic force—a force with macro-scale homogeneity but which is subject to quantum-level disorder—and not a fundamental interaction. The theory, based on string theory, black hole physics, and quantum information theory, describes gravity as an emergent phenomenon that springs from the quantum entanglement of small bits of spacetime information. As such, entropic gravity is said to abide by the second law of thermodynamics under which the entropy of a physical system tends to increase over time.

Read more

These recent advances in hardware have highlighted a chicken-and-egg problem: what use will quantum machines be if there is no software to run on them? That accounts for this year’s race to win over developers, who will need to learn a completely new programming approach in preparation for the future machines.


Problem is to persuade developers to make programs for machines that don’t yet exist.

Read more

When one of the first personal computers, the Altair 8800 came along in 1976, Microsoft was ready with a programming language, Altair BASIC. It wants to be equally prepared when quantum computers go mainstream, so it has unveiled a new programming language and other tools for the futuristic tech at its Ignite conference. You’ll still need to understand Qubits and other weird concepts, but by integrating traditional languages like C# and Python, Microsoft will make it easier to do mainstream computing on the complex machines.

Quantum computing is famously difficult to grasp — even IBM’s “Beginner’s Guide” is laughingly opaque. In discussing Microsoft’s new initiatives, Bill Gates called the physics “hieroglyphics,” and when asked if he could describe it in one sentence, Satya Nadella said “I don’t think so. I wish I could.”

So, let’s just talk about what it can do, then. By taking advantage of the principles of superposition and entanglement, quantum computers can solve certain types of problems exponentially faster than the best supercomputers. “It would allow scientists to do computations in minutes or hours that would take the lifetime of the universe on even the most advanced classical computers,” Microsoft explains. “That, in turn, would mean that people could find answers to scientific questions previously thought unanswerable.”

Read more

President Chunli Bai of the Chinese Academy of Sciences in Beijing had a meeting yesterday with President Anton Zeilinger of the Austria Academy of Sciences in Vienna.

Although 7,400 kilometres (4,600 miles) apart, they were certain no uninvited guests were eavesdropping thanks to the fact their video call was encrypted. Quantum style.

Just a few months ago, China was in the news for a landmark achievement in quantum communication, using a satellite called Micius to transmit entangled photons over a record distance.

Read more

Scholarly paper on building a time machine:

“Quantum teleportation through time-shifted AdS wormholes.

(Submitted on 30 Aug 2017)

Based on the work of Gao-Jafferis-Wall and Maldacena-Stanford-Yang, we observe that the time-shifted thermofield states of two entangled CFTs can be made traversable by an appropriate coupling of the two CFTs, or alternatively by the application of a modified quantum teleportation protocol. This provides evidence for the smoothness of the horizon for a large class of entangled states related to the thermofield by time-translations. The smoothness of these states has some relevance for the firewall paradox and the proposal that some observables in quantum gravity may be state-dependent. We notice that quantum teleportation through these entangled states could be used in a laboratory setup to implement a time-machine, which allows the observer to travel far in the future.”


Based on the work of Gao-Jafferis-Wall and Maldacena-Stanford-Yang, we.

Observe that the time-shifted thermofield states of two entangled CFTs can be.
made traversable by an appropriate coupling of the two CFTs, or alternatively.

By the application of a modified quantum teleportation protocol. This provides
evidence for the smoothness of the horizon for a large class of entangled.
states related to the thermofield by time-translations. The smoothness of these.

States has some relevance for the firewall paradox and the proposal that some.
observables in quantum gravity may be state-dependent. We notice that quantum.

Read more

https://youtube.com/watch?v=BsKkqigDRmU

Trying to outrun the expiration of Moore’s Law.


As conventional microchip design reaches its limits, DARPA is pouring money into the specialty chips that might power tomorrow’s autonomous machines.

The coming AI revolution faces a big hurdle: today’s microchips.

It’s one thing to get a bunch of transistors on an integrated circuit to crunch numbers, even very large ones. But what the brain does is far more difficult. Processing vast amounts of visual data for use by huge, multi-cellular organism is very different from the narrow calculations of conventional math. The algorithms that will drive tomorrow’s autonomous cars, planes, and programs will be incredibly data-intensive, with needs well beyond what conventional chips were ever designed for. This is one reason for the hype surrounding quantum computing and neurosynaptic chips.

Read more