Toggle light / dark theme

The 4th International Conference on Quantum Technologies held in Moscow last month was supposed to put the spotlight on Google, who were preparing to give a lecture on a 49-qubit quantum computer they have in the works.

A morning talk presented by Harvard University’s Mikhail Lukin, however, upstaged that evening’s event with a small announcement of his own – his team of American and Russian researchers had successfully tested a 51-qubit device, setting a landmark in the race for quantum supremacy.

Quantum computers are considered to be part of the next generation in revolutionary technology; devices that make use of the odd ‘in-between’ states of quantum particles to accelerate the processing power of digital machines.

Read more

The equations of physics are things that we humans created to understand the Universe, and it can be hard to disentangle them from the Universe’s innate properties. It turns out that one of the weirdest things scientists have come up with, what Albert Einstein derisively called “spooky action at a distance,” is more than just math: It’s a fact of reality.

That concept is also known as entanglement, and it’s what allows particles that have once interacted to share a connection regardless of the separation between them. A team of physicists in the United Kingdom used some dense mathematics to come to their Einstein-angering conclusion, taking an important step towards proving whether quantum mechanics’ weirdness is just the math talking, or whether it speaks to innate physical requirements. Their mathematical proof’s main assumption is that any new physics theory should be backward-compatible with the physics you learned in high school.

Read more

Berkeley-based quantum computing firm Rigetti will allow 40 machine learning startups from 11 countries to make use of its devices to help crunch their AI problems.

Rigetti is small compared to its main rivals—the likes of Google, IBM, and Intel. But as we’ve reported in the past, the firm is working on a complex chip architecture that promises to scale up well, and should be particularly suited to applications like machine learning and chemistry simulations. That’s why we made it one of our 50 Smartest Companies of 2017.

But, like IBM and Google, part of Rigetti’s business model has always been to develop a kind of quantum-powered cloud service that would allow people to make use of its technology remotely. The newly announced partnership—which will be with companies from Creative Destruction Lab, a Canadian incubator that focuses on science-based startups—is a chance to test that theory out using Rigetti’s Forest programming environment.

Read more

(Phys.org)—For the first time, physicists have demonstrated that hyperentangled photons can be transmitted in free space, which they showed by sending many thousands of these photons between the rooftops of two buildings in Vienna. Hyperentanglement means that the photons are simultaneously entangled in at least two different properties—in this experiment, the researchers combined two two-dimensionally entangled properties to achieve four-dimensional hyperentanglement.

By showing that hyperentanglement transmission is feasible in the real world and not only in the lab, the physicists expect that the demonstration could one day be scaled up to establish a highly secure quantum Internet that uses satellites to quickly and securely transmit across the globe.

The physicists, led by Rupert Ursin at the Institute for Quantum Optics and Quantum Information (IQOQI) at the Austrian Academy of Sciences in Vienna, have published a paper on the distribution of hyperentanglement via atmospheric free-space links in a recent issue of Nature Communications.

Read more

That’s because so much of the technology is still in its infancy. Physicists still can’t control and manipulate quantum signals very well. Pan’s quantum satellite may have been able to send and receive signals, but it can’t really store quantum information—the best quantum memories can only preserve information for less than an hour. And researchers still don’t know what material makes the best quantum memory.


A Chinese physicist hopes that quantum communications will span multiple countries by 2030. So… what’s it for?

Read more

A small tweak on a definitive experiment in quantum physics has allowed scientists to observe for the first time exactly how molecules behave as waves.

The results are solidly in line with what theory covering complex quantum phenomena predicts, so don’t expect any radical new physics here. But as with most quantum experiments, the implications of seeing such a counter-intuitive theory in action makes our head spin.

Researchers from the Universities of Vienna and Tel Aviv have recently collaborated on turning a two-decade old idea into a reality, replacing tiny particles with large organic molecules in a variation on Clinton Davisson and Lester Germer’s classic 1927 double slit experiment in order to test the limits of a law governing their behaviour.

Read more

[Image Source: Erik Lucero/WikimediaCommons]

The development of the computer network puts China amongst the world leaders of quantum technology. The network works by using the city of Jinan as a quantum computer hub. The city is located between Beijing and Shanghai so it can enhance the Beijing-Shanghai quantum network.

Read more

A new experiment at the Large Hadron Collider has confirmed one of the oldest predictions in quantum physics.

Physicists from the ATLAS experiment at CERN have revealed they’ve observed direct evidence of a process known as light-by-light scattering, in which light interacts with itself at high energy.

This phenomenon is critical to current understanding of quantum electrodynamics, and scientists have sought this ‘milestone result’ for decades – but now, for the first time, researchers say have evidence of photons that interact and change directions.

Read more

The inventor of the EmDrive, a controversial space propulsion device that may speed up space travel, has revealed details of how it could be used to create a reusable launch vehicle to take rockets and satellites into space, as well as for personal flight.

Roger Shawyer has published a presentation about the third generation of the EmDrive, which he says is an improvement on the second generation. The original concept for the EmDrive, developed in 2008, was designed to enable in-orbit propulsion. The second generation, which has been in development since 2010, uses a superconducting cavity.

Read more