Toggle light / dark theme

A response to McClelland and Plaut’s
comments in the Phys.org story:

Do brain cells need to be connected to have meaning?

Asim Roy
Department of Information Systems
Arizona State University
Tempe, Arizona, USA
www.lifeboat.com/ex/bios.asim.roy

Article reference:

Roy A. (2012). “A theory of the brain: localist representation is used widely in the brain.” Front. Psychology 3:551. doi: 10.3389/fpsyg.2012.00551

Original article: http://www.frontiersin.org/Journal/FullText.aspx?s=196&name=cognitive_science&ART_DOI=10.3389/fpsyg.2012.00551

Comments by Plaut and McClelland: http://phys.org/news273783154.html

Note that most of the arguments of Plaut and McClelland are theoretical, whereas the localist theory I presented is very much grounded in four decades of evidence from neurophysiology. Note also that McClelland may have inadvertently subscribed to the localist representation idea with the following statement:

Even here, the principles of distributed representation apply: the same place cell can represent very different places in different environments, for example, and two place cells that represent overlapping places in one environment can represent completely non-overlapping places in other environments.”

The notion that a place cell can “represent” one or more places in different environments is very much a localist idea. It implies that the place cell has meaning and interpretation. I start with responses to McClelland’s comments first. Please reference the Phys.org story to find these quotes from McClelland and Plaut and see the contexts.

1. McClelland – “what basis do I have for thinking that the representation I have for any concept – even a very familiar one – is associated with a single neuron, or even a set of neurons dedicated only to that concept?”

There’s four decades of research in neurophysiology on receptive field cells in the sensory processing systems and on hippocampal place cells that shows that single cells can encode a concept – from motion detection, color coding and line orientation detection to identifying a particular location in an environment. Neurophysiologists have also found category cells in the brains of humans and animals. See the next response which has more details on category cells. The neurophysiological evidence is substantial that single cells encode concepts, starting as early as the retinal ganglion cells. Hubel and Wiesel won a Nobel Prize in physiology and medicine in 1981 for breaking this “secret code” of the brain. Thus there’s enough basis to think that a single neuron can be dedicated to a concept and even at a very low level (e.g. for a dot, a line or an edge).

2. McClelland – “Is each such class represented by a localist representation in the brain?”

Cells that represent categories have been found in human and animal brains. Fried et al. (1997) found some MTL (medial temporal lobe) neurons that respond selectively to gender and facial expression and Kreiman et al. (2000) found MTL neurons that respond to pictures of particular categories of objects, such as animals, faces and houses. Recordings of single-neuron activity in the monkey visual temporal cortex led to the discovery of neurons that respond selectively to certain categories of stimuli such as faces or objects (Logothetis and Sheinberg, 1996; Tanaka, 1996; Freedman and Miller, 2008).

I quote Freedman and Miller (2008): “These studies have revealed that the activity of single neurons, particularly those in the prefrontal and posterior parietal cortices (PPCs), can encode the category membership, or meaning, of visual stimuli that the monkeys had learned to group into arbitrary categories.”

Lin et al. (2007) report finding “nest cells” in mouse hippocampus that fire selectively when the mouse observes a nest or a bed, regardless of the location or environment.

Gothard et al. (2007) found single neurons in the amygdala of monkeys that responded selectively to images of monkey faces, human faces and objects as they viewed them on a computer monitor. They found one neuron that responded in particular to threatening monkey faces. Their general observation is (p. 1674): “These examples illustrate the remarkable selectivity of some neurons in the amygdala for broad categories of stimuli.”

Thus the evidence is substantial that category cells exist in the brain.

References:

  1. Fried, I., McDonald, K. & Wilson, C. (1997). Single neuron activity in human hippocampus and amygdala during recognition of faces and objects. Neuron 18, 753–765.
  2. Kreiman, G., Koch, C. & Fried, I. (2000) Category-specific visual responses of single neurons in the human medial temporal lobe. Nat. Neurosci. 3, 946–953.
  3. Freedman DJ, Miller EK (2008) Neural mechanisms of visual categorization: insights from neurophysiology. Neurosci Biobehav Rev 32:311–329.
  4. Logothetis NK, Sheinberg DL (1996) Visual object recognition. Annu Rev Neurosci 19:577–621.
  5. Tanaka K (1996) Inferotemporal cortex and object vision. Annu Rev Neurosci 19:109–139.
  6. Lin, L. N., Chen, G. F., Kuang, H., Wang, D., & Tsien, J. Z. (2007). Neural encoding of the concept of nest in the mouse brain. Proceedings of theNational Academy of Sciences of the United States of America, 104, 6066–6071.
  7. Gothard, K.M., Battaglia, F.P., Erickson, C.A., Spitler, K.M. & Amaral, D.G. (2007). Neural Responses to Facial Expression and Face Identity in the Monkey Amygdala. J. Neurophysiol. 97, 1671–1683.

3. McClelland – “Do I have a localist representation for each phase of every individual that I know?”

Obviously more research is needed to answer these types of questions. But Saddam Hussein and Jennifer Aniston type cells may provide the clue someday.

4. McClelland – “Let us discuss one such neuron – the neuron that fires substantially more when an individual sees either the Eiffel Tower or the Leaning Tower of Pisa than when he sees other objects. Does this neuron ‘have meaning and interpretation independent of other neurons’? It can have meaning for an external observer, who knows the results of the experiment – but exactly what meaning should we say it has?”

On one hand, this obviously brings into focus a lot of the work in neurophysiology. This could boil down to asking who is to interpret the activity of receptive fields, place and grid cells and so on and whether such interpretation can be independent of other neurons. In neurophysiology, the interpretation of these cells (e.g. for motion detection, color coding, edge detection, place cells and so on) are obviously being verified independently in various research labs throughout the world and with repeated experiments. So it is not that some researcher is arbitrarily assigning meaning to cells and that such results can’t be replicated and verified. For many such cells, assignment of meaning is being verified by different labs.

On the other hand, this probably is a question about whether that cell is a category cell and how to assign meaning to it. The interpretation of a cell that responds to pictures of the Eiffel Tower and the Leaning Tower of Pisa, but not to other landmarks, could be somewhat similar to a place cell that responds to a certain location or it could be similar to a category cell. Similar cells have been found in the MTL region — a neuron firing to two different basketball players, a neuron firing to Luke Skywalker and Yoda, both characters of Star Wars, and another firing to a spider and a snake (but not to other animals) (Quiroga & Kreiman, 2010a). Quian Quiroga et al. (2010b, p. 298) had the following observation on these findings: “…. one could still argue that since the pictures the neurons fired to are related, they could be considered the same concept, in a high level abstract space: ‘the basketball players,’ ‘the landmarks,’ ‘the Jedi of Star Wars,’ and so on.”

If these are category cells, there is obviously the question what other objects are included in the category. But, it’s clear that the cells have meaning although it might include other items.

References:

  1. Quian Quiroga, R. & Kreiman, G. (2010a). Measuring sparseness in the brain: Comment on Bowers (2009). Psychological Review, 117, 1, 291–297.
  2. Quian Quiroga, R. & Kreiman, G. (2010b). Postscript: About Grandmother Cells and Jennifer Aniston Neurons. Psychological Review, 117, 1, 297–299.

5. McClelland – “In the context of these observations, the Cerf experiment considered by Roy may not be as impressive. A neuron can respond to one of four different things without really having a meaning and interpretation equivalent to any one of these items.”

The Cerf experiment is not impressive? What McClelland is really questioning is the existence of highly selective cells in the brains of humans and animals and the meaning and interpretation associated with those cells. This obviously has a broader implication and raises questions about a whole range of neurophysiological studies and their findings. For example, are the “nest cells” of Lin et al. (2007) really category cells sending signals to the mouse brain that there is a nest nearby? Or should one really believe that Freedman and Miller (2008) found category cells in the monkey visual temporal cortex that identify certain categories of stimuli such as faces or objects? Or should one believe that Gothard et al. (2007) found category cells in the amygdala of monkeys that responded selectively to images of monkey faces, human faces and objects as they viewed them on a computer monitor? And how about that one neuron that Gothard et al. (2007) found that responded in particular to threatening monkey faces? And does this question about the meaning and interpretation of highly selective cells also apply to simple and complex receptive fields in the retina ganglion and the primary visual cortex? Note that a Nobel Prize has already been awarded for the discovery of these highly selective cells.

The evidence for the existence of highly selective cells in the brains of humans and animals is substantive and irrefutable although one can theoretically ask “what else does it respond to?” Note that McClelland’s question contradicts his own view that there could exist place cells, which are highly selective cells.

6. McClelland – “While we sometimes (Kumeran & McClelland, 2012 as in McClelland & Rumelhart, 1981) use localist units in our simulation models, it is not the neurons, but their interconnections with other neurons, that gives them meaning and interpretation….Again we come back to the patterns of interconnections as the seat of knowledge, the basis on which one or more neurons in the brain can have meaning and interpretation.”

“one or more neurons in the brain can have meaning and interpretation” – that sounds like localist representation, but obviously that’s not what is meant. Anyway, there’s no denying that there is knowledge embedded in the connections between the neurons, but that knowledge is integrated by the neurons to create additional knowledge. So the neurons have additional knowledge that does not exist in the connections. And single cell studies are focused on discovering the integrated knowledge that exists only in the neurons themselves. For example, the receptive field cells in the sensory processing systems and the hippocampal place cells show that some cells detect direction of motion, some code for color, some detect orientation of a line and some detect a particular location in an environment. And there are cells that code for certain categories of objects. That kind of knowledge is not easily available in the connections. In general, consolidated knowledge exists within the cells and that’s where the general focus has been of single cell studies.

7. Plaut – “Asim’s main argument is that what makes a neural representation localist is that the activation of a single neuron has meaning and interpretation on a stand-alone basis. This is about how scientists interpret neural activity. It differs from the standard argument on neural representation, which is about how the system actually works, not whether we as scientists can make sense of a single neuron. These are two separate questions.”

Doesn’t “how the system actually works” depend on our making “sense of a single neuron?” The representation theory has always been centered around single neurons, whether they have meaning on a stand-alone basis or not. So how does making “sense of a single neuron” become a separate question now? And how are these two separate questions addressed in the literature?

8. Plaut – “My problem is that his claim is a bit vacuous because he’s never very clear about what a coherent ‘meaning and interpretation’ has to be like…. but never lays out the constraints that this is meaning and interpretation, and this isn’t. Since we haven’t figured it out yet, what constitutes evidence against the claim? There’s no way to prove him wrong.

In the article, I used the standard definition from cognitive science for localist units, which is a simple one, that localist units have meaning and interpretation. There is no need to invent a new definition for localist representation. The standard definition is very acceptable, accepted by the cognitive science community and I draw attention to that in the article with verbatim quotes from Plate, Thorpe and Elman. Here they are again.

  • Plate (2002):“Another equivalent property is that in a distributed representation one cannot interpret the meaning of activity on a single neuron in isolation: the meaning of activity on any particular neuron is dependent on the activity in other neurons (Thorpe 1995).”
  • Thorpe (1995, p. 550): “With a local representation, activity in individual units can be interpreted directly … with distributed coding individual units cannot be interpreted without knowing the state of other units in the network.”
  • Elman (1995, p. 210): “These representations are distributed, which typically has the consequence that interpretable information cannot be obtained by examining activity of single hidden units.”

The terms “meaning” and “interpretation” are not bounded in any way other than that by means of the alternative representation scheme where “meaning” of a unit is dependent on other units. That’s how it’s constrained in the standard definition and that’s been there for a long time.

Neither Plaut nor McClelland have questioned the fact that receptive fields in the sensory processing systems have meaning and interpretation. Hubel and Wiesel won the Nobel Prize in physiology and medicine in 1981 for breaking this “secret code” of the brain. Here’s part of the Nobel Prize citation:

“Thus, they have been able to show how the various components of the retinal image are read out and interpreted by the cortical cells in respect to contrast, linear patterns and movement of the picture over the retina. The cells are arranged in columns, and the analysis takes place in a strictly ordered sequence from one nerve cell to another and every nerve cell is responsible for one particular detail in the picture pattern.”

Neither Plaut nor McClelland have questioned the fact that place cells have meaning and interpretation. McClelland, in fact, accepts the fact that place cells indicate locations in an environment, which means that he accepts that they have meaning and interpretation.

9. Plaut – “If you look at the hippocampal cells (the Jennifer Aniston neuron), the problem is that it’s been demonstrated that the very same cell can respond to something else that’s pretty different. For example, the same Jennifer Aniston cell responds to Lisa Kudrow, another actress on the TV show Friends with Aniston. Are we to believe that Lisa Kudrow and Jennifer Aniston are the same concept? Is this neuron a Friends TV show cell?”

Want to clarify three things here. First, localist cells are not necessarily grandmother cells. Grandmother cells are a special case of localist cells and this has been made clear in the article. For example, in the primary visual cortex, there are simple and complex cells that are tuned to visual characteristics such as orientation, color, motion and shape. They are localist cells, but not grandmother cells.

Second, the analysis in the article of the interactive activation (IA) model of McClelland and Rumelhart (1981) shows that a localist unit can respond to more than one concept in the next higher level. For example, a letter unit can respond to many word units. And the simple and complex cells in the primary visual cortex will respond to many different objects.

Third, there are indeed category cells in the brain. Response No. 2 above to McClelland’s comments cites findings in neurophysiology on category cells. So the Jennifer Aniston/Lisa Kudrow cell could very well be a category cell, much like the one that fired to spiders and snakes (but not to other animals) and the one that fired for both the Eiffel Tower and the Tower of Pisa (but not to other landmarks). But category cells have meaning and interpretation too. The Jennifer Aniston/Lisa Kudrow cell could be a Friends TV show cell, as Plaut suggested, but it still has meaning and interpretation. However, note that Koch (2011, p. 18, 19) reports finding another Jennifer Aniston MTL cell that didn’t respond to Lisa Kudrow:

One hippocampal neuron responded only to photos of actress Jennifer Aniston but not to pictures of other blonde women or actresses; moreover, the cell fired in response to seven very different pictures of Jennifer Aniston.

References:

  1. Koch, C. (2011). Being John Malkovich. Scientific American Mind, March/April, 18–19.

10. Plaut “Only a few experiments show the degree of selectivity and interpretability that he’s talking about…. In some regions of the medial temporal lobe and hippocampus, there seem to be fairly highly selective responses, but the notion that cells respond to one concept that is interpretable doesn’t hold up to the data.

There are place cells in the hippocampus that identify locations in an environment. Locations are concepts. And McClelland admits place cells represent locations. There is also plenty of evidence on the existence of category cells in the brain (see Response No. 2 above to McClelland’s comments) and categories are, of course, concepts. And simple and complex receptive fields also represent concepts such as direction of motion, line orientation, edges, shapes, color and so on. There is thus abundance of data in neurophysiology that shows that “cells respond to one concept that is interpretable” and that evidence is growing.

The existence of highly tuned and selective cells that have meaning and interpretation is now beyond doubt, given the volume of evidence from neurophysiology over the last four decades.

The Truth about Space Travel is Stranger than Fiction

Posted in asteroid/comet impacts, biological, biotech/medical, business, chemistry, climatology, complex systems, cosmology, counterterrorism, defense, economics, education, engineering, ethics, events, evolution, existential risks, finance, futurism, geopolitics, habitats, homo sapiens, human trajectories, life extension, lifeboat, media & arts, military, neuroscience, nuclear weapons, physics, policy, space, sustainability, transparency, treatiesTagged , , , , , , , , , , , , , , , , , , , , , , , | 5 Comments on The Truth about Space Travel is Stranger than Fiction

I have been corresponding with John Hunt and have decided that perhaps it is time to start moving toward forming a group that can accomplish something.

The recent death of Neil Armstrong has people thinking about space. The explosion of a meteor over Britain and the curiosity rover on Mars are also in the news. But there is really nothing new under the sun. There is nothing that will hold people’s attention for very long outside of their own immediate comfort and basic needs. Money is the central idea of our civilization and everything else is soon forgotten. But this idea of money as the center of all activity is a death sentence. Human beings die and species eventually become extinct just as worlds and suns also are destroyed or burn out. Each of us is in the position of a circus freak on death row. Bizarre, self centered, doomed; a cosmic joke. Of all the creatures on this planet, we are the freaks the other creatures would come to mock- if they were like us. If they were supposedly intelligent like us. But are we actually the intelligent ones? The argument can be made that we lack a necessary characteristic to be considered truly intelligent life forms.

Truly intelligent creatures would be struggling with three problems if they found themselves in our situation as human beings on Earth in the first decades of this 21st century;

1. Mortality. With technology possible to delay death and eventually reverse the aging process, intelligent beings would be directing the balance of planetary resources towards conquering “natural” death.

2. Threats. With technology not just possible, but available, to defend the earth from extinction level events, the resources not being used to seek an answer to the first problem would necessarily be directed toward this second danger.

3. Progress. With science advancing and accelerating, the future prospects for engineering humans for greater intelligence and eventually building super intelligent machines are clear. Crystal clear. Not addressing these prospects is a clear warning that we are, as individuals, as a species, and as a living planet, headed not toward a bright future, but in the opposite direction toward a dead and final end.

One engineered pathogen will destroy us forever. One impact larger than average will destroy us forever. The reasoning that death is somehow “natural” which drives us to ignore the subject of destruction will destroy us forever. Earth changes are inevitable and taking place now- despite our faith in television and popular culture that everything is fun and games. Man is not the measure of all things. We think tomorrow will come just like yesterday- but it will not.

The Truth about Space Travel is that there are no stargates or warp drives that will take us across the galaxy like commecial airliners or cruise ships take us across oceans. If we do wake up and change our course, space voyages will take centuries and human expansion will be measured in millenia. We will be frozen when we travel to distant stars. And this survivable freezing will mark the beginning of a new age since being able to delay death by freezing will completely transform life. The first such successful procedure will mean the end of the world as we know it- and the beginning of a new civilization.

Though unknown to the public, the atomic bomb and then the hydrogen bomb marked the true beginning of the Space Age. Hydrogen bombs can push cities in space, hollow moons, to some percentage of the speed of light. These cities can travel to other stars, such as Epsilon Eridani with it’s massive asteroid belt. And there more artificial hollow moons can be mass produced to provide new worlds to live in. This is not fiction I am speaking of but something we could do right now- today. We only lack the procedure to freeze and successfully revive a human being. It is, indeed, stranger than fiction.

In Beam Propulsion we have the answer to bending the rocket equation to our will and allowing millions and eventually billions of human beings to migrate into space. Just as Verne and Wells made accurate predictions of the decades to come, we now are seeing the possible obvious future unfolding before our eyes.

But the most possible and probable obvious future at this moment is destruction. The end of days. Unless we do something.
You and I and everyone you know is involved in this. Let’s get started.

Whether via spintronics or some quantum breakthrough, artificial intelligence and the bizarre idea of intellects far greater than ours will soon have to be faced.

http://www.sciencedaily.com/releases/2012/08/120819153743.htm

http://www.sciencedaily.com/releases/2012/08/120815131137.htm

One more step has been taken toward making whole body cryopreservation a practical reality. An understanding of the properties of water allows the temperature of the human body to be lowered without damaging cell structures.

Just as the microchip revolution was unforeseen the societal effects of suspending death have been overlooked completely.

The first successful procedure to freeze a human being and then revive that person without damage at a later date will be the most important single event in human history. When that person is revived he or she will awaken to a completely different world.

It will be a mad rush to build storage facilities for the critically ill so their lives can be saved. The very old and those in the terminal stages of disease will be rescued from imminent death. Vast resources will be turned toward the life sciences as the race to repair the effects of old age and cure disease begins. Hundreds of millions may eventually be awakened once aging is reversed. Life will become far more valuable overnight and activities such as automobile and air travel will be viewed in a new light. War will end because no one will desire to hasten the death of another human being.

It will not be immortality, just parole from the death row we all share. Get ready.

AI scientist Hugo de Garis has prophesied the next great historical conflict will be between those who would build gods and those who would stop them.

It seems to be happening before our eyes as the incredible pace of scientific discovery leaves our imaginations behind.

We need only flush the toilet to power the artificial mega mind coming into existence within the next few decades. I am actually not intentionally trying to write anything bizarre- it is just this strange planet we are living on.

http://www.sciencedaily.com/releases/2012/08/120813155525.htm

http://www.sciencedaily.com/releases/2012/08/120813123034.htm

GatgetBridge is currently just a concept. It might start its life as a discussion forum, later turn into a network or an organisation and hopefully inspire a range of similar activities.

We will soon be able to use technology to make ourselves more intelligent, feel happier or change what motivates us. When the use of such technologies is banned, the nations or individuals who manage to cheat will soon lord it over their more obedient but unfortunately much dimmer fellows. When these technologies are made freely available, a few terrorists and psychopaths will use them to cause major disasters. Societies will have to find ways to spread these mind enhancement treatments quickly among the majority of their citizens, while keeping them from the few who are likely to cause harm. After a few enhancement cycles, the most capable members of such societies will all be “trustworthy” and use their skills to stabilise the system (see “All In The Mind”).

But how can we manage the transition period, the time in which these technologies are powerful enough to be abused but no social structures are yet in place to handle them? It might help to use these technologies for entertainment purposes, so that many people learn about their risks and societies can adapt (see “Should we build a trustworthiness tester for fun”). But ideally, a large, critical and well-connected group of technology users should be part of the development from the start and remain involved in every step.

To do that, these users would have to spend large amounts of money and dedicate considerable manpower. Fortunately, the basic spending and working patterns are in place: People already use a considerable part of their income to buy consumer devices such as mobile phones, tablet computers and PCs and increasingly also accessories such as blood glucose meters, EEG recorders and many others; they also spend a considerable part of their time to get familiar with these devices. Manufacturers and software developers are keen to turn any promising technology into a product and over time this will surely include most mind measuring and mind enhancement technologies. But for some critical technologies this time might be too long. GadgetBridge is there to shorten it as follows:

- GadgetBridge spreads its philosophy — that mind-enhancing technologies are only dangerous when they are allowed to develop in isolation — that spreading these technologies makes a freer world more likely — and that playing with innovative consumer gadgets is therefore not just fun but also serves a good cause.

- Contributors make suggestions for new consumer devices based on the latest brain research and their personal experiences. Many people have innovative ideas but few are in a position to exploit them. Contributors rather donate their ideas that see them wither away or claimed by somebody else.

- All ideas are immediately published and offered free of charge to anyone who wants to use them. Companies select and implement the best options. Users buy their products and gain hands-on experience with the latest mind measurement and mind enhancement technologies. When risks become obvious, concerned users and governments look for ways to cope with them before they get out of hand.

- Once GadgetBridge produces results, it might attract funding from the companies that have benefited or hope to benefit from its services. GadgetBridge might then organise competitions, commission feasibility studies or develop a structure that provides modest rewards to successful contributors.

Your feedback is needed! Please be honest rather than polite: Could GadgetBridge make a difference?

Greetings fellow travelers, please allow me to introduce myself; I’m Mike ‘Cyber Shaman’ Kawitzky, independent film maker and writer from Cape Town, South Africa, one of your media/art contributors/co-conspirators.

It’s a bit daunting posting to such an illustrious board, so let me try to imagine, with you; how to regard the present with nostalgia while looking look forward to the past, knowing that a millisecond away in the future exists thoughts to think; it’s the mode of neural text, reverse causality, non-locality and quantum entanglement, where the traveller is the journey into a world in transition; after 9/11, after the economic meltdown, after the oil spill, after the tsunami, after Fukushima, after 21st Century melancholia upholstered by anti-psychotic drugs help us forget ‘the good old days’; because it’s business as usual for the 1%; the rest continue downhill with no brakes. Can’t wait to see how it all works out.

Please excuse me, my time machine is waiting…
Post cyberpunk and into Transhumanism

Thomas Insel from the National Institute of Mental Health recently focused on his life’s work on oxytocin, as I learned from a report in the Wall Street Journal (Oct. 5) featuring this “bonding hormone” of all mammals including humans. (See http://www.dnalc.org/view/2377-Oxytocin-Emotion-and-Autism.html )

Humans are the laughter-bonding mammals. Non-smile-blind toddlers at one point get seduced by Mom’s laughter into a bonding bout. Much as a puppy can in principle (no one checked on this) be seduced into a bonding bout by an adult dog’s happy tail-wagging. This strange convergence of two moods (bonding and joyfulness) into being expressed by the same innate releaser thus has occurred twice independently in two different mammalian species, wolf and human. But the toddler unlike the puppy is mirror-competent. Hence he is able to in addition concoct the hypothesis that Mom is being rewarded over there deep inside by his own momentary activity here that is making her laugh: A strange suspicion which overwhelms his own heart. He invents benevolence as existing over there out of nothing through perceiving it in the joy given to him. And then he tries to do the same thing reciprocally in anticipation of her appreciation. The all of a sudden grown appreciative former animal is no longer an animal – he suddenly knows heaven.

The invention of appreciation turns the toddler into a person. In Bill Seaman’s and mine new book, “Neosentience – The Benevolence Engine” (University of Chicago Press/Intellect 2011), much of this is detailed. Why am I mentioning it here? It is because benevolence is the human stamp. No other animal is benevolent so far – knowing about responsibility and the Now and truthfulness. But we humans can induce animals more intelligent than we are, hardware-wise, into becoming our elder brothers. Leo Szilard — bomb-inventor, bomb proposer and (in vain) bomb retractor — caught a first glimpse of this desperate hope in 1948, as detailed in my paper on the gothic-R theorem of general relativity.

Can I seduce everyone who reads this into becoming moved into “calling another soul his own,” as poet Schiller and composer Beethoven put it in their scientifically correct Song of Joy?

Science is the greatest fun in this most human activity of mutual support and appreciation. Let us not kill it by allowing it to be misused in an attempt to shrink the planet to 2 cm in a matter of years. The toddlers won’t understand this nor will the mothers.

The Nature of Identity Part 3
(Drawings not reproduced here — contact the author for copies)
We have seen how the identity is defined by the 0,0 point – the centroid or locus of perception.

The main problem we have is finding out how neural signals translate into sensory signals – how neural information is translated into the language we understand – that of perception. How does one neural pattern become Red and another the Scent of coffee. Neurons do not emit any color nor any scent.

As in physics, so in cognitive science, some long cherished theories and explanations are having to change.

Perception, and the concept of an Observer (the 0,0 point), are intimately related to the idea of Identity.

Many years ago I was a member of what was called the Artorga Research Group – a group including some of the early cyberneticists – who were focussed on Artificial Organisms.

One of the main areas of concern was, of course, Memory.

One of our group was a young German engineer who suggested that perhaps memories were in fact re-synthesised in accordance with remembered rules, as opposed to storing huge amounts of data.

Since then similar ideas have arisen in such areas as computer graphics.

Here is an example,

It shows a simple picture on a computer screen. We want to store (memorize) this information.

One way is to store the information about each pixel on the screen – is it white or is it black. With a typical screen resolution that could mean over 2.5 million bits of information

But there is another way….

In this process one simply specifies the start point (A) in terms of its co-ordinates (300 Vertically, 100 Horizontally); and its end point (B) (600 Vertically, 800 Horizontally); and simply instructs – “Draw a line of thickness w between them”.

The whole picture is specified in just a few bits..

The first method, specifying bit by bit, known as the Bit Mapped Protocol (.BMP), uses up lots of memory space.

The other method, based on re-synthesising according to stored instructions, is used in some data reduction formats; and is, essentially, just what that young engineer suggested, many years before.

On your computer you will have a screen saver –almost certainly a colorful scene – and of course that is stored, so that if you are away from the computer for a time it can automatically come on to replace what was showing, and in this way “save” your screen.

So – where are those colors in your screensaver stored, where are the shapes shown in it stored? Is there in the computer a Color Storage Place? Is there a Shape Storage Place?

Of course not.

Yet these are the sort of old, sodden concepts that are sometimes still applied in thinking about the brain and memories.

Patterned streams of binary bits, not unlike neural signals , (but about 70 times larger), are fed to a computer screen. And then the screen takes these patterns of bits as instructions to re-synthesise glowing colors and shapes.

We cannot actually perceive the binary signals, and so they are translated by the screen into a language that we can understand. The screen is a translator – that is its sole function.

This is exactly analogous to the point made earlier about perception and neural signals.

The main point here, though, is that what is stored in the computer memory are not colors and shapes but instructions.

And inherent in these instructions as a whole, there must exist a “map”.

Each instruction must not only tell its bit of the screen what color to glow – but it must also specify the co-ordinates of that bit. If the picture is the head of a black panther with green eyes, we don’t want to see a green head and black eyes. The map has to be right. It is important.

Looking at it in another way the map can be seen as a connectivity table – specifying what goes where. Just two different ways of describing the same thing.

As well as simple perception there are derivatives of what has been perceived that have to be taken into account, for example, the factor called movement.

Movement is not in itself perceptible (as we shall presently show); it is a computation.

Take for example, the following two pictures shown side-by-side.

I would like to suggest that one of these balls is moving. And to ask — which one is moving?

If movement had a visual attribute then one could see which one it was – but movement has no visual attributes – it is a computation.

To determine the speed of something, one has to observe its current position, compare that with the record (memory) of its previous position; check the clock to determine the interval between the two observations; and then divide the distance between the two positions, s; by the elapsed time, t; to determine the speed, v,

s/t = v.

This process is carried out automatically, (subconsciously), in more elaborate organisms by having two eyes spaced apart by a known distance and having light receptors – the retina – where each has a fast turn-on and a slow (about 40 ms) turn off, all followed by a bit of straightforward neural circuitry.

Because of this system, one can look at a TV screen and see someone in a position A, near the left hand edge, and then very rapidly, a series of other still pictures in which the person is seen being closer and closer to B, at the right hand edge.

If the stills are shown fast enough – more than 25 a second — then we will see the person walking across the screen from left to right. What you see is movement – except you don’t actually see anything extra on the screen. Being aware of movement as an aid to survival is very old in evolutionary terms. Even the incredibly old fish, the coelacanth, has two eyes.

The information provided is a derivate of the information provided by the receptors.

And now we ought to look at information in a more mathematical way – as in the concept of Information Space (I-space).

For those who are familiar with the term, it is a Hilbert Space.

Information Space is not “real” space – it is not distance space – it is not measurable in metres and centimetres.

As an example, consider Temperature Space. Take the temperature of the air going in to an air-conditioning (a/c) system; the temperature of the air coming out of the a/c system; and the temperature of the room. These three provide the three dimensions of a Temperature Space. Every point in that space correlates to an outside air temperature, an a/c output temperature and the temperature of the room. No distances are involved – just temperatures.

This is an illustration of what it would look like if we re-mapped it into a drawing.

The drawing shows the concept of a 3-dimensional Temperature Space (T-space). The darkly outlined loop is shown here as a way of indicating the “mapping” of a part of T-space.

But what we are interested in here is I-space. And I-space will have many more dimensions than T-space.

In I-space each location is a different item of information, and the fundamental rule of I-space – indeed of any Hilbert space – is,

Similarity equals Proximity.

This would mean that the region concerned with Taste, for example, would be close to the area concerned with Smell, since the two are closely related.

Pale Red would be closer to Medium Red than to Dark Red.

Perception then would be a matter of connectivity.

An interconnected group we could refer to as a Composition or Feature.

Connect 4 & legs & fur & tail & bark & the word dog & the sound of the word dog – and we have a familiar feature.

Features are patterns of interconnections; and it is these features that determine what a thing or person is seen as. What they are seen as is taken as their identity. It is the identity as seen from outside.

To oneself one is here and now, a 0,0 reference point. To someone else one is not the 0,0 point – one is there — not here, and to that person it is they who are the 0,0 point.

This 0,0 or reference point is crucially important. One could upload a huge mass of data, but if there was no 0,0 point that is all it would be – a huge mass of data.

The way forward towards this evolutionary goal, is not to concentrate on being able to upload more and more data, faster and faster – but instead to concentrate on being able to identify the 0.0 point; and to be able to translate from neural code to the language of perception.

The vulnerability of the bio body is the source of most threats to its existence.

We have looked at the question of uploading the identity by uploading the memory contents, on the assumption that the identity is contained in the memories. I believe this assumption has been proved to be almost certainly wrong.

What we are concentrating on is the identity as the viewer of its perceptions, the centroid or locus of perception.

It is the fixed reference point. And the locus of perception is always Here, and it is always Now. This is abbreviated here to 0,0.

What more logical place to find the identity than where it considers Here and Now – its residence in Space Time.

It would surely be illogical to start searching for the identity where it considers to be Somewhere Else or in Another Time.

We considered the fact that the human being accesses the outside world through its senses, and that its information processing system is able to present that information as being “external.” A hand is pricked with a pin. The sensory information – a stream of neural impulses, all essentially identical — progress to the upper brain where the pattern is read and the sensation of pain is felt. That sensation, however, is projected or mapped onto the exact point it originated from.

One feels the pain at the place the neural disturbance came from. It is an illusion — a very useful illusion.

In the long slow progress of evolution from a single cell to the human organism, and to the logical next step — the “android” (we must find a better word) – this mapping function must be one of the most vital survival strategies. If the predator is gnawing at your tail, it’s smart to know where the pain is coming from.

It wasn’t just structure that evolved, but “smarts” too… smarter systems.

Each sensory channel conveys not just sensory information but information regarding where it came from. Like a set of outgoing information vectors. But there is also a complementary set of incoming vectors. The array of sensory vectors from visual, audible, tactile, and so on, all converge on one location – a locus of perception. And the channels cross-correlate. The hand is pricked – we immediately look at the place the pain came from. And… one can “follow one’s nose” to see where the barbecue is.

Dr Shu can use both his left hand and arm; and his right hand and arm in coordination to lift up the $22M Ming vase he is in the process of stealing.

Left/right coordination — so obvious and simple it gets overlooked.

A condition known as Synesthesia [http://hplusmagazine.com/editors-blog/sight-synesthesia-what-happens-when-senses-can-be-rewired ] provides an example of how two channels can get confused — for example, being able to see sounds or hear movement.

Perhaps the most interesting example is the rubber hand experiment from UC Riverside. In this the subject places their hands palm down on a table. The left arm and hand are screened off, and a substitute left “arm” and rubber hand are installed. After a while, the subject reacts as though the substitute was their real hand.

It is on Youtube at http://www.youtube.com/watch?v=93yNVZigTsk.

This phenomenon has been attributed to neuroplasticity.

A simpler explanation would be changed coordinates — something that people who row or who ride bicycles are familiar with — even if they have never analysed it. The vehicle becomes part of oneself. It becomes a part of the system, an extension. What about applying the same sense on a grander scale? Such a simple and common observation may have just as much relevance to the next step in evolution as the number of teraflops per second.

So, we can get the sensory vectors to be re-deployed. But one of the fundamental questions would be – can we get the 0,0 locus, the centroid of perception, to shift to another place?

Our environment, the environment we live in, is made of perception. Outside there may be rocks and rivers and rain and wind and thunder… but not in the head. Outside this “theater in the head,” there is a world of photons and particles and energy and radiation — reality — but what we see is what is visible, what we hear is what is audible, what we feel is what is tangible … that is our environment, that is where we live.

However, neurones do not emit any light, neurons do not make any sound, they are not a source of pressure or temperature so what the diddly are we watching and listening to?

We live in a world of perception. Thanks to powerful instrumentation and a great deal of scientific research we know that behind this world of perception there are neurons, unknown to us all the time working away providing us with colors and tones and scents….

But they do not emit colors or tones or scents – the neuronal language is binary – fired or not fired.

Somewhere the neuronal binary (Fired/Not Fired) language has to be translated into the language of perception – the range of colors, the range of tones, the range of smells … these are each continuous variables; not two-state variables as in the language of neurons.

There has been a great flurry of research activity in the area of neurons, and what was considered to be “Gospel” 10 years ago, is no longer so.

IBM and ARM in the UK have (summer 2011) announced prototype brains with hyper-connectivity – a step in the right direction but the fundamental question of interpretation/translation is side-stepped.

I hope someone will prove me wrong, but I am not aware of anyone doing any work on the translator question. This is a grievous error.

(To be continued)