Toggle light / dark theme

The School of Computer Science and Statistics in Dublin, Ireland, has begun investigating how much user data iOS and Android send to Apple and Google, respectively. Overall, they discovered that, even when the devices are idle or minimally configured, each tends to share an average of 4.5 minutes’ worth of data every day.

For instance, Apple and Google both receive the devices’ IMEI, hardware serial number, SIM and IMSI, handset phone number and other items. Moreover, Android and iOS continue to transmit telemetry to their , even if the user specifically opts not to share this data. In fact, as soon as the user inserts a SIM card into either , corresponding user data beacons out to the parent companies of each.

Meanwhile, users have no way to avoid iOS devices sharing with Apple the MAC addresses of nearby devices—such as other handsets or home gateway—as well as GPS location. Indeed, these users do not even have to log in for the device to share their data. On the other hand, Google collects a much larger amount of data from nearby devices than Apple. As a comparison, Google receives about 1MB of data versus 42KB for Apple. While idle, the Android Pixel sends around 1MB every 12 hours, while iOS shares 52KB of data. Furthermore, Google even collects about 20 times more handset data than Apple, and the majority of users in the US have Android devices.

A team from Georgia Tech has just announced a world-first: a 3D-printed rectifying antenna the size of a playing card that can harvest electromagnetic energy from 5G signals and use it to power devices, turning 5G networks into wireless power grids.

Wireless communications put a lot of energy into the air, and over the years we’ve covered a number of efforts to harvest that energy. Short-range Wi-Fi signals have been the target of several projects, TV broadcasts and radio signals have been the focus of others. One device even hopes to increase the life of a smartphone’s battery by 30 percent just by harvesting some of the radio waves the phone itself is generating.

But 5G communications offer a whole new opportunity. 5G has been designed for blazing fast and low-latency communications, reads the Georgia Tech team’s latest study, published in the peer-reviewed journal Scientific Reports. To do so, mm-wave frequencies were adopted and allowed unprecedently high radiated power densities by the FCC. Unknowingly, the architects of 5G have, thereby, created a wireless power grid capable of powering devices at ranges far exceeding the capabilities of any existing technologies.

You are constantly adjusting your walking parameters based on the feedback you’re getting from your environment. You walk differently on a soft surface, you prepare yourself before using stairs. Meanwhile robots cannot really do that, especially exoskeletons. These robotic legs could help disabled people walk again on their own, but how could they prepare to stop, climb stairs, make a sharp turn? Scientists believe that in the future exoskeletons are going to be smart thanks to cameras and artificial intelligence.

Currently exoskeletons need to be controlled manually via smartphone applications or joysticks. This is less than ideal, because the disabled person can’t walk as intuitively as an able-bodied person can. And his or her hands are always occupied with these controls. That kind of a cognitive load is extremely tiring and can be dangerous over time. Could you imagine needing to take out your phone every time you want to climb a set of stairs or walk through a strip of sand? Scientists want to borrow a page from a book about autonomous cars and therefore are optimizing AI computer software to process the video feed to accurately recognize stairs, doors and other features of the surrounding environment.

Brokoslaw Laschowski, leader of the ExoNet research project, said: “Our control approach wouldn’t necessarily require human thought. Similar to autonomous cars that drive themselves, we’re designing autonomous exoskeletons that walk for themselves.”

The robotic exoskeletons can think and make control decisions on their own.


Robotics researchers are developing exoskeleton legs capable of thinking and making control decisions on their own using onboard cameras and sophisticated artificial intelligence technology.

As the name suggests, an exoskeleton leg is an external structure that can be used to support people who are otherwise unable to walk. But the things still do have limitations; most existing exoskeleton legs must be manually switched over to different modes – via smartphone applications or joysticks – for more complicated tasks, such as stepping over or around obstacles.

That can be inconvenient and cognitively demanding,” said Brokoslaw Laschowski, a Ph.D. candidate in systems design engineering who leads a University of Waterloo research project called ExoNet. “Every time you want to perform a new locomotor activity, you have to stop, take out your smartphone and select the desired mode.

When Renaldo Hudson left the Danville Correctional Center on Sept. 2, he was beaming. As the sun shone down on a hot day in Eastern Illinois, Hudson took his first free steps in 37 years.

Later that day, he arrived at the Precious Blood Ministry of Reconciliation, a restorative justice nonprofit that helps former prisoners get on their feet. There, he saw friends for the first time in years and hugged his attorney, Jennifer Soble.

He was also handed a Samsung smartphone, a piece of technology that wouldn’t have been imaginable to an American in 1983.

A new type of 3D-printed battery which uses electrodes made from vegetable starch and carbon nanotubes could provide mobile devices with a more environmentally-friendly, higher-capacity source of power.

A team of engineers led from the University of Glasgow have developed the battery in a bid to make more sustainable batteries capable of storing and delivering power more efficiently. The battery’s design and fabrication is outlined in a paper published in the Journal of Power Sources.

Lithium-ion batteries provide a useful combination of lightweight, compact form factors and the ability to withstand many cycles of charging and discharging. That has made them ideally suited for use in a wide array of devices, including laptops, mobile phones, smart watches, and electric vehicles.

A team of researchers at the University of Georgia has created a backpack equipped with AI gear aimed at replacing guide dogs and canes for the blind. Intel has published a News Byte describing the new technology on their Newsroom page.

Technology to help get around in public has been improving in recent years, thanks mostly to smartphone apps. But such apps, the team notes, are not sufficient given the technology available. To make a better assistance system, the group designed an AI system that could be placed in a backpack and worn by a to give them much better clues about their environment.

The backpack holds a smart AI system running on a laptop, and is fitted with OAK-D cameras (which, in addition to providing obstacle information, can also provide ) hidden in a vest and also in a waist pack. The cameras run Intel’s Movidius VPU and are programmed using the OpenVINO toolkit. The waist pack also holds batteries for the system. The AI system was trained to recognize objects a sighted pedestrian would see when walking around in a town or city, such as cars, bicycles, other pedestrians or even overhanging tree limbs.

First introduced in 2019, Google Chrome’s Live Caption accessibility feature offers real-time captions for audio playing on both Pixel and non-Pixel phones, including the Galaxy S20 series, OnePlus 8 series, OnePlus Nord and beyond.

The main benefits of this feature arise for hearing impaired users as well as users who simply wish to watch a video without audio. Furthermore, not only does the allow users to view videos without sound for their own convenience, it also permits the viewer to avoid disturbing others nearby with audio.

Until recently, this tool has only been available on Android phones, but Google is now releasing Live Caption for its Chrome browser. So far, Google aims to implement this feature on both Chrome desktop as well as Chrome 89. Now, users can access Live Caption for Chrome 89 by navigating to Settings Advanced Accessibility. Chrome 89 users who don’t automatically see the Live Caption toggle can try restarting Chrome.

All of which would be nice and handy, but clearly, privacy and ethics are going to be a big issue for people — particularly when a company like Facebook is behind it. Few people in the past would ever have lived a life so thoroughly examined, catalogued and analyzed by a third party. The opportunities for tailored advertising will be total, and so will the opportunities for bad-faith actors to abuse this treasure trove of minute detail about your life.

But this tech is coming down the barrel. It’s still a few years off, according to the FRL team. But as far as it is concerned, the technology and the experience are proven. They work, they’ll be awesome, and now it’s a matter of working out how to build them into a foolproof product for the mass market. So, why is FRL telling us about it now? Well, this could be the greatest leap in human-machine interaction since the touchscreen, and frankly Facebook doesn’t want to be seen to be making decisions about this kind of thing behind closed doors.

“I want to address why we’re sharing this research,” said Sean Keller, FRL Director of Research. “Today, we want to open up an important discussion with the public about how to build these technologies responsibly. The reality is that we can’t anticipate or solve all the ethical issues associated with this technology on our own. What we can do is recognize when the technology has advanced beyond what people know is possible and make sure that the information is shared openly. We want to be transparent about what we’re working on, so people can tell us their concerns about this technology.””


When augmented reality hits the market at full strength, putting digital overlays over the physical world through transparent glasses, it will intertwine itself deeper into the fabric of your life than any technology that’s come before it. AR devices will see the world through your eyes, constantly connected, always trying to figure out what you’re up to and looking for ways to make themselves useful.

Facebook is already leaps and bounds ahead of the VR game with its groundbreaking Oculus Quest 2 wireless headsets, and it’s got serious ambitions in the augmented reality space too. In an online “Road to AR glasses” roundtable for global media, the Facebook Reality Labs (FRL) team laid out some of the eye-popping next-gen AR technology it’s got up and running on the test bench. It also called on the public to get involved in the discussion around privacy and ethics, with these devices just a few scant years away from changing our world as completely as the smartphone did.

Wrist-mounted neuro-motor interfaces

Presently, our physical interactions with digital devices are crude, and they frequently bottleneck our progress. The computer mouse, the graphical user interface, the desktop metaphor and the touchscreen have all been great leaps forward, but world-changing breakthroughs in human-machine interface (HMI) technology come along once in a blue moon.

A study of Japanese university students and recent graduates has revealed that writing on physical paper can lead to more brain activity when remembering the information an hour later. Researchers say that the complex, spatial and tactile information associated with writing by hand on physical paper is likely what leads to improved memory.

“Actually, paper is more advanced and useful compared to electronic documents because paper contains more one-of-a-kind information for stronger memory recall,” said Professor Kuniyoshi L. Sakai, a neuroscientist at the University of Tokyo and corresponding author of the research recently published in Frontiers in Behavioral Neuroscience. The research was completed with collaborators from the NTT Data Institute of Management Consulting.