Toggle light / dark theme

Famous Chilean philosopher Humberto Maturana describes “certainty” in science as subjective emotional opinion and astonishes the physicists’ prominence. French astronomer and “Leonardo” publisher Roger Malina hopes that the LHC safety issue would be discussed in a broader social context and not only in the closer scientific framework of CERN.

(Article published in “oekonews”: http://oekonews.at/index.php?mdoc_id=1067777 )

The latest renowned “Ars Electronica Festival” in Linz (Austria) was dedicated in part to an uncritical worship of the gigantic particle accelerator LHC (Large Hadron Collider) at the European Nuclear Research Center CERN located at the Franco-Swiss border. CERN in turn promoted an art prize with the idea to “cooperate closely” with the arts. This time the objections were of a philosophical nature – and they had what it takes.

In a thought provoking presentation Maturana addressed the limits of our knowledge and the intersubjective foundations of what we call “objective” and “reality.” His talk was spiked with excellent remarks and witty asides that contributed much to the accessibility of these fundamental philosophical problems: “Be realistic, be objective!” Maturana pointed out, simply means that we want others to adopt our point of view. The great constructivist and founder of the concept of autopoiesis clearly distinguished his approach from a solipsistic position.

Given Ars Electronica’s spotlight on CERN and its experimental sub-nuclear research reactor, Maturana’s explanations were especially important, which to the assembled CERN celebrities may have come in a mixture of an unpleasant surprise and a lack of relation to them.

During the question-and-answer period, Markus Goritschnig asked Maturana whether it wasn’t problematic that CERN is basically controlling itself and discarding a number of existential risks discussed related to the LHC — including hypothetical but mathematically demonstrable risks also raised — and later downplayed — by physicists like Nobel Prize winner Frank Wilczek, and whether he thought it necessary to integrate in the LHC safety assessment process other sciences aside from physics such as risk search. In response Maturana replied (in the video from about 1:17): “We human beings can always reflect on what we are doing and choose. And choose to do it or not to do it. And so the question is, how are we scientists reflecting upon what we do? Are we taking seriously our responsibility of what we do? […] We are always in the danger of thinking that, ‘Oh, I have the truth’, I mean — in a culture of truth, in a culture of certainty — because truth and certainty are not as we think — I mean certainty is an emotion. ‘I am certain that something is the case’ means: ‘I do not know’. […] We cannot pretend to impose anything on others; we have to create domains of interrogativity.”

Disregarding these reflections, Sergio Bertolucci (CERN) found the peer review system among the physicists’ community a sufficient scholarly control. He refuted all the disputed risks with the “cosmic ray argument,” arguing that much more energetic collisions are naturally taking place in the atmosphere without any adverse effect. This safety argument by CERN on the LHC, however, can also be criticized under different perspectives, for example: Very high energetic collisions could be measured only indirectly — and the collision frequency under the unprecedented artificial and extreme conditions at the LHC is of astronomical magnitudes higher than in the Earth’s atmosphere and anywhere else in the nearer cosmos.

The second presentation of the “Origin” Symposium III was held by Roger Malina, an astrophysicist and the editor of “Leonardo” (MIT Press), a leading academic journal for the arts, sciences and technology.

Malina opened with a disturbing fact: “95% of the universe is of an unknown nature, dark matter and dark energy. We sort of know how it behaves. But we don’t have a clue of what it is. It does not emit light, it does not reflect light. As an astronomer this is a little bit humbling. We have been looking at the sky for millions of years trying to explain what is going on. And after all of that and all those instruments, we understand only 3% of it. A really humbling thought. […] We are the decoration in the universe. […] And so the conclusion that I’d like to draw is that: We are really badly designed to understand the universe.”

The main problem in research is: “curiosity is not neutral.” When astrophysics reaches its limits, cooperation between arts and science may indeed be fruitful for various reasons and could perhaps lead to better science in the end. In a later communication Roger Malina confirmed that the same can be demonstrated for the relation between natural sciences and humanities or social sciences.

However, the astronomer emphasized that an “art-science collaboration can lead to better science in some cases. It also leads to different science, because by embedding science in the larger society, I think the answer was wrong this morning about scientists peer-reviewing themselves. I think society needs to peer-review itself and to do that you need to embed science differently in society at large, and that means cultural embedding and appropriation. Helga Nowotny at the European Research Council calls this ‘socially robust science’. The fact that CERN did not lead to a black hole that ended the world was not due to peer-review by scientists. It was not due to that process.”

One of Malina’s main arguments focused on differences in “the ethics of curiosity”. The best ethics in (natural) science include notions like: intellectual honesty, integrity, organized scepticism, dis-interestedness, impersonality, universality. “Those are the believe systems of most scientists. And there is a fundamental flaw to that. And Humberto this morning really expanded on some of that. The problem is: Curiosity is embodied. You cannot make it into a neutral ideal of scientific curiosity. And here I got a quote of Humberto’s colleague Varela: “All knowledge is conditioned by the structure of the knower.”

In conclusion, a better co-operation of various sciences and skills is urgently necessary, because: “Artists asks questions that scientists would not normally ask. Finally, why we want more art-science interaction is because we don’t have a choice. There are certain problems in our society today that are so tough we need to change our culture to resolve them. Climate change: we’ve got to couple the science and technology to the way we live. That’s a cultural problem, and we need artists working on that with the scientists every day of the next decade, the next century, if we survive it.

Then Roger Malina directly turned to the LHC safety discussion and articulated an open contradiction to the safety assurance pointed out before: He would generally hope for a much more open process concerning the LHC safety debate, rather than discussing this only in a narrow field of particle physics, concrete: “There are certain problems where we cannot cloister the scientific activity in the scientific world, and I think we really need to break the model. I wish CERN, when they had been discussing the risks, had done that in an open societal context, and not just within the CERN context.”

Presently CERN is holding its annual meeting in Chamonix to fix LHC’s 2012 schedules in order to increase luminosity by a factor of four for maybe finally finding the Higgs Boson – against a 100-Dollar bet of Stephen Hawking who is convinced of Micro Black Holes being observed instead, immediately decaying by hypothetical “Hawking Radiation” — with God Particle’s blessing. Then it would be himself gaining the Nobel Prize Hawking pointed out. Quite ironically, at Ars Electronica official T-Shirts were sold with the “typical signature” of a micro black hole decaying at the LHC – by a totally hypothetical process involving a bunch of unproven assumptions.

In 2013 CERN plans to adapt the LHC due to construction failures for up to CHF 1 Billion to run the “Big Bang Machine” at double the present energies. A neutral and multi-disciplinary risk assessment is still lacking, while a couple of scientists insist that their theories pointing at even global risks have not been invalidated. CERN’s last safety assurance comparing natural cosmic rays hitting the Earth with the LHC experiment is only valid under rather narrow viewpoints. The relatively young analyses of high energetic cosmic rays are based on indirect measurements and calculations. Sort, velocity, mass and origin of these particles are unknown. But, taking the relations for granted and calculating with the “assuring” figures given by CERN PR, within ten years of operation, the LHC under extreme and unprecedented artificial circumstances would produce as many high energetic particle collisions as occur in about 100.000 years in the entire atmosphere of the Earth. Just to illustrate the energetic potential of the gigantic facility: One LHC-beam, thinner than a hair, consisting of billions of protons, has got the power of an aircraft carrier moving at 12 knots.

This article in the Physics arXiv Blog (MIT’s Technology Review) reads: “Black Holes, Safety, and the LHC Upgrade — If the LHC is to be upgraded, safety should be a central part of the plans.”, closing with the claim: “What’s needed, of course, is for the safety of the LHC to be investigated by an independent team of scientists with a strong background in risk analysis but with no professional or financial links to CERN.”
http://www.technologyreview.com/blog/arxiv/27319/

Australian ethicist and risk researcher Mark Leggett concluded in a paper that CERN’s LSAG safety report on the LHC meets less than a fifth of the criteria of a modern risk assessment. There but for the grace of a goddamn particle? Probably not. Before pushing the LHC to its limits, CERN must be challenged by a really neutral, external and multi-disciplinary risk assessment.

Video recordings of the “Origin III” symposium at Ars Electronica:
Presentation Humberto Maturana:

Presentation Roger Malina:

“Origin” Symposia at Ars Electronica:
http://www.aec.at/origin/category/conferences/

Communication on LHC Safety directed to CERN
Feb 10 2012
For a neutral and multidisciplinary risk assessment to be done before any LHC upgrade
http://lhc-concern.info/?page_id=139

More info, links and transcripts of lectures at “LHC-Critique — Network for Safety at experimental sub-nuclear Reactors”:

www.LHC-concern.info

Twenty years ago, way back in the primordial soup of the early Network in an out of the way electromagnetic watering hole called USENET, this correspondent entered the previous millennium’s virtual nexus of survival-of-the-weirdest via an accelerated learning process calculated to evolve a cybernetic avatar from the Corpus Digitalis. Now, as columnist, sci-fi writer and independent filmmaker, [Cognition Factor — 2009], with Terence Mckenna, I have filmed rocket launches and solar eclipses for South African Astronomical Observatories, and produced educational programs for South African Large Telescope (SALT). Latest efforts include videography for the International Astronautical Congress in Cape Town October 2011, and a completed, soon-to-be-released, autobiography draft-titled “Journey to Everywhere”.

Cognition Factor attempts to be the world’s first ‘smart movie’, digitally orchestrated for the fusion of Left and Right Cerebral Hemispheres in order to decode civilization into an articulate verbal and visual language structured from sequential logical hypothesis based upon the following ‘Big Five’ questions,

1.) Evolution Or Extinction?
2.) What Is Consciousness?
3.) Is God A Myth?
4.) Fusion Of Science & Spirit?
5.) What Happens When You Die?

Even if you believe that imagination is more important than knowledge, you’ll need a full deck to solve the ‘Arab Spring’ epidemic, which may be a logical step in the ‘Global Equalisation Process as more and more of our Planet’s Alumni fling their hats in the air and emit primal screams approximating;
“we don’t need to accumulate (so much) wealth anymore”, in a language comprising of ‘post Einsteinian’ mathematics…

Good luck to you if you do…

Schwann Cybershaman

I am taking the advice of a reader of this blog and devoting part 2 to examples of old school and modern movies and the visionary science they portray.

Things to Come 1936 — Event Horizon 1997
Things to Come was a disappointment to Wells and Event Horizon was no less a disappointment to audiences. I found them both very interesting as a showcase for some technology and social challenges.… to come- but a little off the mark in regards to the exact technology and explicit social issues. In the final scene of Things to Come, Raymond Massey asks if mankind will choose the stars. What will we choose? I find this moment very powerful- perhaps the example; the most eloguent expression of the whole genre of science fiction. Event Horizon was a complete counterpoint; a horror movie set in space with a starship modeled after a gothic cathedral. Event Horizon had a rescue crew put in stasis for a high G several month journey to Neptune on a fusion powered spaceship. High accelleration and fusion brings H-bombs to mind, and though not portrayed, this propulsion system is in fact a most probable future. Fusion “engines” are old hat in sci-fi despite the near certainty the only places fusion will ever work as advertised are in a bomb or a star. The Event Horizon, haunted and consigned to hell, used a “gravity drive” to achieve star travel by “folding space.” Interestingly, a recent concept for a black hole powered starship is probably the most accurate forecast of the technology that will be used for interstellar travel in the next century. While ripping a hole in the fabric of space time may be strictly science fantasy, for the next thousand years at least, small singularity propulsion using Hawking radiation to achieve a high fraction of the speed of light is mathematically sound and the most obvious future.

https://lifeboat.com/blog/2012/09/only-one-star-drive-can-work-so-far

That is, if humanity avoids an outbreak of engineered pathogens or any one of several other threats to our existence in that time frame.

Hand in hand with any practical method of journeys to other star systems in the concept of the “sleeper ship.” Not only as inevitable as the submarine or powered flight was in the past, the idea of putting human beings in cold storage would bring tremendous changes to society. Suspended animation using a cryopreservation procedure is by far the most radical and important global event possible, and perhpas probable, in the near future. The ramifications of a revivable whole body cryopreservation procedure are truly incredible. Cryopreservation would be the most important event in the history of mankind. Future generations would certainly mark it as the beginning of “modern” civilization. Though not taken seriously anymore than the possiblility of personal computers were, the advances in medical technology make any movies depicting suspended animation quite prophetic.

The Thing 1951/Them 1954 — Deep Impact 1998/Armegeddon 1998
These four movies were essentially about the same.…thing. Whether a space vampire not from earth in the arctic, mutated super organisms underneath the earth, or a big whatever in outer space on a collision course with earth, the subject was a monstrous threat to our world, the end of humankind on earth being the common theme. The lifeboat blog is about such threats and the The Thing and Them would also appeal to any fan of Barbara Ehrenreich’s book, Blood Rites. It is interesting that while we appreciate in a personal way what it means to face monsters or the supernatural, we just do not “get” the much greater threats only recently revealed by impact craters like Chixculub. In this way these movies dealing with instinctive and non-instinctive realized threats have an important relationship to each other. And this connection extends to the more modern sci-fi creature features of past decades. Just how much the The Thing and Them contributed to the greatest military sci-fi movie of the 20th century (Aliens, of course) will probably never be known. Director James Cameron once paid several million dollars out of court to sci-fi writer Harlan Ellison after admitting during an interview to using Ellison’s work- so he will not be making that mistake again. The second and third place honors, Starship Troopers and Predator, were both efforts of Dutch Film maker Paul Verhoeven.

While The Thing and Them still play well, and Deep Impact, directed by James Cameron’s ex-wife, is a good flick and has uncanny predictive elements such as a black president and a tidal wave, Armegeddon is worthless. I mention this trash cinema only because it is necessary for comparison and to applaud the 3 minutes when the cryogenic fuel transfer procedure is seen to be the farce that it is in actuality. Only one of the worst movie directors ever, or the space tourism industry, would parade such a bad idea before the public.
Ice Station Zebra 1968 — The Road 2009
Ice Station Zebra was supposedly based on a true incident. This cold war thriller featured Rock Hudson as the penultimate submarine commander and was a favorite of Howard Hughes. By this time a recluse, Hughes purchased a Las Vegas TV station so he could watch the movie over and over. For those who have not seen it, I will not spoil the sabotage sequence, which has never been equaled. I pair Ice Station Zebra and The Road because they make a fine quartet, or rather sixtet, with The Thing/Them and Deep Impact/Armegeddon.

The setting for many of the scenes in these movies are a wasteland of ice, desert, cometoid, or dead forest. While Armegeddon is one of the worst movies ever made on a big budget, The Road must be one of the best on a small budget- if accuracy is a measure of best. The Road was a problem for the studio that produced it and release was delayed due to the reaction of the test audiences. All viewers left the theatre profoundly depressed. It is a shockingly realistic movie and disturbed to the point where I started writing about impact deflection. The connection between Armegeddon and The Road, two movies so different, is the threat and aftermath of an asteroid or comet impact. While The Road never specifies an impact as the disaster that ravaged the planet, it fits the story perfectly. Armegeddon has a few accurate statements about impacts mixed in with ludicrous plot devices that make the story a bad experience for anyone concerned with planetary protection. It seems almost blasphemous and positively criminal to make such a juvenile for profit enterprise out of an inevitable event that is as serious as serious gets. Do not watch it. Ice Station Zebra, on the other hand, is a must see and is in essence a showcase of the only tools available to prevent The Road from becoming reality. Nuclear weapons and space craft- the very technologies that so many feared would destroy mankind, are the only hope to save the human race in the event of an impending impact.

Part 3:
Gog 1954 — Stealth 2005
Fantastic Voyage 1966 — The Abyss 1989
And notable moments in miscellaneous movies.

Steamships, locomotives, electricity; these marvels of the industrial age sparked the imagination of futurists such as Jules Verne. Perhaps no other writer or work inspired so many to reach the stars as did this Frenchman’s famous tale of space travel. Later developments in microbiology, chemistry, and astronomy would inspire H.G. Wells and the notable science fiction authors of the early 20th century.

The submarine, aircraft, the spaceship, time travel, nuclear weapons, and even stealth technology were all predicted in some form by science fiction writers many decades before they were realized. The writers were not simply making up such wonders from fanciful thought or childrens ryhmes. As science advanced in the mid 19th and early 20th century, the probable future developments this new knowledge would bring about were in some cases quite obvious. Though powered flight seems a recent miracle, it was long expected as hydrogen balloons and parachutes had been around for over a century and steam propulsion went through a long gestation before ships and trains were driven by the new engines. Solid rockets were ancient and even multiple stages to increase altitude had been in use by fireworks makers for a very long time before the space age.

Some predictions were seen to come about in ways far removed yet still connected to their fictional counterparts. The U.S. Navy flagged steam driven Nautilus swam the ocean blue under nuclear power not long before rockets took men to the moon. While Verne predicted an electric submarine, his notional Florida space gun never did take three men into space. However there was a Canadian weapons designer named Gerald Bull who met his end while trying to build such a gun for Saddam Hussien. The insane Invisible Man of Wells took the form of invisible aircraft playing a less than human role in the insane game of mutually assured destruction. And a true time machine was found easily enough in the mathematics of Einstein. Simply going fast enough through space will take a human being millions of years into the future. However, traveling back in time is still as much an impossibillity as the anti-gravity Cavorite from the First Men in the Moon. Wells missed on occasion but was not far off with his story of alien invaders defeated by germs- except we are the aliens invading the natural world’s ecosystem with our genetically modified creations and could very well soon meet our end as a result.

While Verne’s Captain Nemo made war on the death merchants of his world with a submarine ram, our own more modern anti-war device was found in the hydrogen bomb. So destructive an agent that no new world war has been possible since nuclear weapons were stockpiled in the second half of the last century. Neither Verne or Wells imagined the destructive power of a single missile submarine able to incinerate all the major cities of earth. The dozens of such superdreadnoughts even now cruising in the icy darkness of the deep ocean proves that truth is more often stranger than fiction. It may seem the golden age of predictive fiction has passed as exceptions to the laws of physics prove impossible despite advertisments to the contrary. Science fiction has given way to science fantasy and the suspension of disbelief possible in the last century has turned to disappointment and the distractions of whimsical technological fairy tales. “Beam me up” was simply a way to cut production costs for special effects and warp drive the only trick that would make a one hour episode work. Unobtainium and wishalloy, handwavium and technobabble- it has watered down what our future could be into childish wish fulfillment and escapism.

The triumvirate of the original visionary authors of the last two centuries is completed with E.E. Doc Smith. With this less famous author the line between predictive fiction and science fantasy was first truly crossed and the new genre of “Space Opera” most fully realized. The film industry has taken Space Opera and run with it in the Star Wars franchise and the works of Canadian film maker James Cameron. Though of course quite entertaining, these movies showcase all that is magical and fantastical- and wrong- concerning science fiction as a predictor of the future. The collective imagination of the public has now been conditioned to violate the reality of what is possible through the violent maiming of basic scientific tenets. This artistic license was something Verne at least tried not to resort to, Wells trespassed upon more frequently, and Smith indulged in without reservation. Just as Madonna found the secret to millions by shocking a jaded audience into pouring money into her bloomers, the formula for ripping off the future has been discovered in the lowest kind of sensationalism. One need only attend a viewing of the latest Transformer movie or download Battlestar Galactica to appreciate that the entertainment industry has cashed in on the ignorance of a poorly educated society by selling intellect decaying brain candy. It is cowboys vs. aliens and has nothing of value to contribute to our culture…well, on second thought, I did get watery eyed when the young man died in Harrison Ford’s arms. I am in no way criticizing the profession of acting and value the talent of these artists- it is rather the greed that corrupts the ancient art of storytelling I am unhappy with. Directors are not directors unless they make money and I feel sorry that these incredibly creative people find themselves less than free to pursue their craft.

The archetype of the modern science fiction movie was 2001 and like many legendary screen epics, a Space Odyssey was not as original as the marketing made it out to be. In an act of cinema cold war many elements were lifted from a Soviet movie. Even though the fantasy element was restricted to a single device in the form of an alien monolith, every artifice of this film has so far proven non-predictive. Interestingly, the propulsion system of the spaceship in 2001 was originally going to use atomic bombs, which are still, a half century later, the only practical means of interplanetary travel. Stanly Kubrick, fresh from Dr. Strangelove, was tired of nukes and passed on portraying this obvious future.

As with the submarine, airplane, and nuclear energy, the technology to come may be predicted with some accuracy if the laws of physics are not insulted but rather just rudely addressed. Though in some cases, the line is crossed and what is rude turns disgusting. A recent proposal for a “NautilusX” spacecraft is one example of a completely vulgar denial of reality. Chemically propelled, with little radiation shielding, and exhibiting a ridiculous doughnut centrifuge, such advertising vehicles are far more dishonest than cinematic fabrications in that they decieve the public without the excuse of entertaining them. In the same vein, space tourism is presented as space exploration when in fact the obscene spending habits of the ultra-wealthy have nothing to do with exploration and everything to do with the attendent taxpayer subsidized business plan. There is nothing to explore in Low Earth Orbit except the joys of zero G bordellos. Rudely undressing by way of the profit motive is followed by a rude address to physics when the key private space scheme for “exploration” is exposed. This supposed key is a false promise of things to come.

While very large and very expensive Heavy Lift Rockets have been proven to be successful in escaping earth’s gravitational field with human passengers, the inferior lift vehicles being marketed as “cheap access to space” are in truth cheap and nasty taxis to space stations going in endless circles. The flim flam investors are basing their hopes of big profit on cryogenic fuel depots and transfer in space. Like the filling station every red blooded American stops at to fill his personal spaceship with fossil fuel, depots are the solution to all the holes in the private space plan for “commercial space.” Unfortunately, storing and transferring hydrogen as a liquified gas a few degrees above absolute zero in a zero G environment has nothing in common with filling a car with gasoline. It will never work as advertised. It is a trick. A way to get those bordellos in orbit courtesy of taxpayer dollars. What a deal.

So what is the obvious future that our present level of knowledge presents to us when entertaining the possible and the impossible? More to come.

Greetings fellow travelers, please allow me to introduce myself; I’m Mike ‘Cyber Shaman’ Kawitzky, independent film maker and writer from Cape Town, South Africa, one of your media/art contributors/co-conspirators.

It’s a bit daunting posting to such an illustrious board, so let me try to imagine, with you; how to regard the present with nostalgia while looking look forward to the past, knowing that a millisecond away in the future exists thoughts to think; it’s the mode of neural text, reverse causality, non-locality and quantum entanglement, where the traveller is the journey into a world in transition; after 9/11, after the economic meltdown, after the oil spill, after the tsunami, after Fukushima, after 21st Century melancholia upholstered by anti-psychotic drugs help us forget ‘the good old days’; because it’s business as usual for the 1%; the rest continue downhill with no brakes. Can’t wait to see how it all works out.

Please excuse me, my time machine is waiting…
Post cyberpunk and into Transhumanism

Wendy McElroy brings an important issue to our attention — the increasing criminalization of filming / recording on-duty police officers.

The techno-progressive angle on this would have to take sousveillance into consideration. If our only response to a surveillance state is to observe “from the bottom” (as, for example, Steve Mann would have it), and if that response is made illegal, it seems that the next set of possible steps forward could include more entrenched recording of all personal interaction.

Already we have a cyborg model for this — “eyeborgs” Rob Spence and Neil Harbisson. So where next?

Resources:

http://www.nytimes.com/2006/12/10/magazine/10section3b.t-3.html

http://en.wikipedia.org/wiki/Steve_Mann

http://eyeborgproject.com/

http://jointchiefs.blogspot.com/2010/06/camera-as-gun-drop-shooter.html

http://es.wikipedia.org/wiki/Neil_Harbisson

With our growing resources, the Lifeboat Foundation has teamed with the Singularity Hub as Media Sponsors for the 2010 Humanity+ Summit. If you have suggestions on future events that we should sponsor, please contact [email protected].

The summer 2010 “Humanity+ @ Harvard — The Rise Of The Citizen Scientist” conference is being held, after the inaugural conference in Los Angeles in December 2009, on the East Coast, at Harvard University’s prestigious Science Hall on June 12–13. Futurist, inventor, and author of the NYT bestselling book “The Singularity Is Near”, Ray Kurzweil is going to be keynote speaker of the conference.

Also speaking at the H+ Summit @ Harvard is Aubrey de Grey, a biomedical gerontologist based in Cambridge, UK, and is the Chief Science Officer of SENS Foundation, a California-based charity dedicated to combating the aging process. His talk, “Hype and anti-hype in academic biogerontology research: a call to action”, will analyze the interplay of over-pessimistic and over-optimistic positions with regards of research and development of cures, and propose solutions to alleviate the negative effects of both.

The theme is “The Rise Of The Citizen Scientist”, as illustrated in his talk by Alex Lightman, Executive Director of Humanity+:

“Knowledge may be expanding exponentially, but the current rate of civilizational learning and institutional upgrading is still far too slow in the century of peak oil, peak uranium, and ‘peak everything’. Humanity needs to gather vastly more data as part of ever larger and more widespread scientific experiments, and make science and technology flourish in streets, fields, and homes as well as in university and corporate laboratories.”

Humanity+ Summit @ Harvard is an unmissable event for everyone who is interested in the evolution of the rapidly changing human condition, and the impact of accelerating technological change on the daily lives of individuals, and on our society as a whole. Tickets start at only $150, with an additional 50% discount for students registering with the coupon STUDENTDISCOUNT (valid student ID required at the time of admission).

With over 40 speakers, and 50 sessions in two jam packed days, the attendees, and the speakers will have many opportunities to interact, and discuss, complementing the conference with the necessary networking component.

Other speakers already listed on the H+ Summit program page include:

  • David Orban, Chairman of Humanity+: “Intelligence Augmentation, Decision Power, And The Emerging Data Sphere”
  • Heather Knight, CTO of Humanity+: “Why Robots Need to Spend More Time in the Limelight”
  • Andrew Hessel, Co-Chair at Singularity University: “Altered Carbon: The Emerging Biological Diamond Age”
  • M. A. Greenstein, Art Center College of Design: “Sparking our Neural Humanity with Neurotech!”
  • Michael Smolens, CEO of dotSUB: “Removing language as a barrier to cross cultural communication”

New speakers will be announced in rapid succession, rounding out a schedule that is guaranteed to inform, intrigue, stimulate and provoke, in moving ahead our planetary understanding of the evolution of the human condition!

H+ Summit @ Harvard — The Rise Of The Citizen Scientist
June 12–13, Harvard University
Cambridge, MA

You can register at http://www.eventbrite.com/event/648806598/friendsofhplus/4141206940.

(Crossposted on the blog of Starship Reckless)

Eleven years ago, Random House published my book To Seek Out New Life: The Biology of Star Trek. With the occasion of the premiere of the Star Trek reboot film and with my mind still bruised from the turgid awfulness of Battlestar Galactica, I decided to post the epilogue of my book, very lightly updated — as an antidote to blasé pseudo-sophistication and a reminder that Prometheus is humanity’s best embodiment. My major hope for the new film is that Uhura does more than answer phones and/or smooch Kirk.

Coda: The Infinite Frontier

star-trekA younger science than physics, biology is more linear and less exotic than its older sibling. Whereas physics is (mostly) elegant and symmetric, biology is lunging and ungainly, bound to the material and macroscopic. Its predictions are more specific, its theories less sweeping. And yet, in the end, the exploration of life is the frontier that matters the most. Life gives meaning to all elegant theories and contraptions, life is where the worlds of cosmology and ethics intersect.

Our exploration of Star Trek biology has taken us through wide and distant fields — from the underpinnings of life to the purposeful chaos of our brains; from the precise minuets of our genes to the tangled webs of our societies.

How much of the Star Trek biology is feasible? I have to say that human immortality, psionic powers, the transporter and the universal translator are unlikely, if not impossible. On the other hand, I do envision human genetic engineering and cloning, organ and limb regeneration, intelligent robots and immersive virtual reality — quite possibly in the near future.

Furthermore, the limitations I’ve discussed in this book only apply to earth biology. Even within the confines of our own planet, isolated ecosystems have yielded extraordinary lifeforms — the marsupials of Australia; the flower-like tubeworms near the hot vents of the ocean depths; the bacteriophage particles which are uncannily similar to the planetary landers. It is certain that when we finally go into space, whatever we meet will exceed our wildest imaginings.

Going beyond strictly scientific matters, I think that the accuracy of scientific details in Star Trek is almost irrelevant. Of course, it puzzles me that a show which pays millions to principal actors and for special effects cannot hire a few grad students to vet their scripts for glaring factual errors (I bet they could even get them for free, they’d be that thrilled to participate). Nevertheless, much more vital is Star Trek’s stance toward science and the correctness of the scientific principles that it showcases. On the latter two counts, the series has been spectacularly successful and damaging at the same time.

The most crucial positive elements of Star Trek are its overall favorable attitude towards science and its strong endorsement of the idea of exploration. Equally important (despite frequent lapses) is the fact that the Enterprise is meant to be a large equivalent to Cousteau’s Calypso, not a space Stealth Bomber. However, some negative elements are so strong that they almost short-circuit the bright promise of the show.

I cannot be too harsh on Star Trek, because it’s science fiction — and TV science fiction, at that. Yet by choosing to highlight science, Star Trek has also taken on the responsibility of portraying scientific concepts and approaches accurately. Each time Star Trek mangles an important scientific concept (such as evolution or black hole event horizons), it misleads a disproportionately large number of people.

The other trouble with Star Trek is its reluctance to showcase truly imaginative or controversial ideas and viewpoints. Of course, the accepted wisdom of media executives who increasingly rely on repeating well-worn concepts is that controversial positions sink ratings. So Star Trek often ignores the agonies and ecstasies of real science and the excitement of true or projected scientific discoveries, replacing them with pseudo-scientific gobbledygook more appropriate for series like The X-Files, Star Wars and Battlestar Galactica. Exciting ideas (silicon lifeforms beyond robots, parallel universes) briefly appear on Star Trek, only to sink without a trace. This almost pathological timidity of Star Trek, which enjoys the good fortune of a dedicated following and so could easily afford to cut loose, does not bode well for its descendants or its genre.

trekmovie2w

On the other hand, technobabble and all, Star Trek fulfills a very imporant role. It shows and endorses the value of science and technology — the only popular TV series to do so, at a time when science has lost both appeal and prestige. With the increasing depth of each scientific field, and the burgeoning of specialized jargon, it is distressingly easy for us scientists to isolate ourselves within our small niches and forget to share the wonders of our discoveries with our fellow passengers on the starship Earth. Despite its errors, Star Trek’s greatest contribution is that it has made us dream of possibilities, and that it has made that dream accessible to people both inside and outside science.

Scientific understanding does not strip away the mystery and grandeur of the universe; the intricate patterns only become lovelier as more and more of them appear and come into focus. The sense of excitement and fulfillment that accompanies even the smallest scientific discovery is so great that it can only be communicated in embarrassingly emotional terms, even by Mr. Spock and Commander Data. In the end these glimpses of the whole, not fame or riches, are the real reason why the scientists never go into the suspended animation cocoons, but stay at the starship chart tables and observation posts, watching the great galaxy wheels slowly turn, the stars ignite and darken.

Star Trek’s greatest legacy is the communication of the urge to explore, to comprehend, with its accompanying excitement and wonder. Whatever else we find out there, beyond the shelter of our atmosphere, we may discover that thirst for knowledge may be the one characteristic common to any intelligent life we encounter in our travels. It is with the hope of such an encounter that people throng around the transmissions from Voyager, Sojourner, CoRoT, Kepler. And even now, contained in the sphere of expanding radio and television transmissions speeding away from Earth, Star Trek may be acting as our ambassador.

(This essay has been published by the Innovation Journalism Blog — here — Deutsche Welle Global Media Forum — here — and the EJC Magazine of the European Journalism Centre — here)

Thousands of lives were consumed by the November terror attacks in Mumbai.

“Wait a second”, you might be thinking. “The attacks were truly horrific, but all news reports say around two hundred people were killed by the terrorists, so thousands of lives were definitely not consumed.”

You are right. And you are wrong.

Indeed, around 200 people were murdered by the terrorists in an act of chilling exhibitionism. And still, thousands of lives were consumed. Imagine that a billion people devoted, on average, one hour of their attention to the Mumbai tragedy: following the news, thinking about it, discussing it with other people. The number is a wild guess, but the guess is far from a wild number. There are over a billion people in India alone. Many there spent whole days following the drama. One billion people times one hour is one billion hours, which is more than 100,000 years. The global average life expectancy is today 66 years. So nearly two thousand lives were consumed by news consumption. It’s far more than the number of people murdered, by any standards.

In a sense, the newscasters became unwilling bedfellows of the terrorists. One terrorist survived the attacks, confessing to the police that the original plan had been to top off the massacre by taking hostages and outlining demands in a series of dramatic calls to the media. The terrorists wanted attention. They wanted the newsgatherers to give it to them, and they got it. Their goal was not to kill a few hundred people. It was to scare billions, forcing people to change reasoning and behavior. The terrorists pitched their story by being extra brutal, providing news value. Their targets, among them luxury hotels frequented by the international business community, provided a set of target audiences for the message of their sick reality show. Several people in my professional surroundings canceled business trips to Mumbai after watching the news. The terrorists succeeded. We must count on more terror attacks on luxury hotels in the future.

Can the journalists and news organizations who were in Mumbai be blamed for serving the interests of the terrorists? I think not. They were doing their jobs, reporting on the big scary event. The audience flocked to their stories. Their business model — generating and brokering attention — was exploited by the terrorists. The journalists were working on behalf of the audience, not on behalf of the terrorists. But that did not change the outcome. The victory of the terrorists grew with every eyeball that was attracted by the news. Without doubt, one of the victims was the role of journalism as a non-involved observer. It got zapped by a paradox. It’s not the first time. Journalism always follows “the Copenhagen interpretation” of quantum mechanics: You can’t measure a system without influencing it.

Self reference is a classic dilemma for journalism. Journalism wants to observe, not be an actor. It wants to cover a story without becoming part of it. At the same time it aspires to empower the audience. But by empowering the audience, it becomes an actor on the story. Non-involvement won’t work, it is a self-referential paradox like the Epimenides paradox (the prophet from Crete who said “All Cretans are liars”). The basic self-referential paradox is the liars’ paradox (“This sentence is false”). This can be a very constructive paradox, if taken by the horns. It inspired Kurt Gödel to reinvent the foundation of mathematics, addressing self-reference. Perhaps the principles of journalism can be reinvented, too? Perhaps the paradox of non-involvement can be replaced by ethics of engagement as practiced by, for example, psychologists and lawyers?

While many classic dilemmas provide constant frustration throughout life, this one is about to get increasingly wicked. Here is why. It is only 40 years since the birth of collaboration between people sitting behind computers linked by a network, “the mother of all demos”, when Doug Engelbart and his team at SRI demoed the first computer mouse, interactive text, video conferencing, teleconferencing, e-mail and hypertext.

Only 40 years after their first demo, and only 15 years after the Internet reached beyond the walls of university campuses, Doug’s tools are in almost every home and office. Soon they’ll be built into every cell phone. We are always online. For the first time in human history, the attention of the whole world can soon be summoned simultaneously. If we summon all the attention the human species can supply, we can focus two hundred human years of attention onto a single issue in a single second. This attention comes equipped with glowing computing power that can process information in a big way.

Every human on the Net is using a computer device able to do millions or billions of operations per second. And more is to come. New computers are always more powerful than their predecessors. The power has doubled every two years since the birth of computers. This is known as Moore’s Law.

If the trend continues for another 40 years, people will be using computers one million times more powerful than today. Try imagining what you can do with that in your phone or hand-held gaming device! Internet bandwidth is also booming. Everybody on Earth will have at least one gadget. We will all be well connected. We will all be able to focus our attention, our ideas and our computational powers on the same thing at the same go. That’s pretty powerful. This is actually what Doug was facilitating when he dreamed up the Demo. The mouse — what Doug is famous for today — is only a detail. Doug says we can only solve the complex problems of today by summoning collective intelligence. Nuclear war, pandemics, global warming. These are all problems requiring collective intelligence. The key to collective intelligence is collective attention. The flow of attention controls how much of our collective intelligence gets allocated to different things.

When Doug Engelbart’s keynoted the Fourth Conference on Innovation Journalism he pointed out that journalism is the perception system of collective intelligence. He hit the nail on the head. When people share news, they have a story in common. This shapes a common picture of the world and a common set of narratives for discussing it. It is agenda setting (there is an established “agenda-setting theory” about this). Journalism is the leading mechanism for generating collective attention. Collective attention is needed for shaping a collective opinion. Collective intelligence might require a collective opinion in order to address collective issues.

Here is where innovation journalism can help. In order for collective intelligence to transform ideas into novelties, we need to be able to generate common sets of narratives around how innovation happens. How do people and organizations doing different things come together in the innovation ecosystem? Narratives addressing this question make it possible for each one of us to relate to the story of innovation. Innovation journalism turns collective attention on new things in society that will increase the value of our lives. This collective attention in turn facilitates the formuation of a collective opinion. Innovation journalism thus connects the innovation economy and democracy (or any other system of governance).

There is an upside and a downside to everything. We can now summon collective attention to track the spread of diseases. But we are also more susceptible to fads, hypes and hysterias. Will our ability to focus collective attention improve our lives or will we become victims of collective neurosis?

We are moving into the attention economy. Information is no longer a scarce commodity. But attention is. Some business strategists think ‘attention transactions’ can replace financial transactions as the focus of our economy. In this sense, the effects on society of collective attention is the macroeconomics of the attention economy. Collective attention is key for exercising collective intelligence. Journalism — the professional generator and broker of collective attention — is a key factor.

This brings us back to Mumbai. How collectively intelligent was it to spend thousands of human lifetimes of attention following the slaughter of hundreds? The jury is out on that one — it depends on the outcome of our attention. Did the collective attention benefit the terrorists? Yes, at least in the short term. Perhaps even in the long term. Did it help solve the situation in Mumbai? Unclear. Could the collective attention have been aimed in other ways at the time of the attacks, which would have had a better outcome for people and society? Yes, probably.

The more wired the world gets, the more terrorism can thrive. When our collective attention grows, the risk of collective fear and obsession follows. It is a threat to our collective mental health, one that will only increase unless we introduce some smart self-regulating mechanisms. These could direct our collective attention to the places where collective attention would benefit society instead of harm.

The dynamics between terrorism and journalism is a market failure of the attention economy.

No, I am not supporting government control over the news. Planned economy has proven to not be a solution for market failures. The problem needs to be solved by a smart feedback system. Solutions may lie in new business models for journalism that provide incentives to journalism to generate constructive and proportional attention around issues, empowering people and bringing value to society. Just selling raw eyeballs or Internet traffic by the pound to advertisers is a recipe for market failure in the attention economy. So perhaps it is not all bad that the traditional raw eyeball business models are being re-examined. It is a good time for researchers to look at how different journalism business models generate different sorts of collective attention, and how that drives our collective intelligence. Really good business models for journalism bring prosperity to the journalism industry, its audience, and the society it works in.

For sound new business models to arise, journalism needs to come to grips with its inevitable role as an actor. Instead of discussing why journalists should not get involved with sources or become parts of the stories they tell, perhaps the solution is for journalists to discuss why they should get involved. Journalists must find a way to do so without loosing the essence of journalism.

Ulrik Haagerup is the leader of the Danish National Public News Service, DR News. He is tired of seeing ‘bad news makes good news and good news makes bad news’. Haagerup is promoting the concept of “constructive journalism”, which focuses on enabling people to improve their lives and societies. Journalism can still be critical, independent and kick butt.

The key issue Haagerup pushes is that it is not enough to show the problem and the awfulness of horrible situations. That only feeds collective obsession, neurosis and, ultimately, depression. Journalism must cover problems from the perspective of how they can be solved. Then our collective attention can be very constructive. Constructive journalism will look for all kinds of possible solutions, comparing and scrutinizing them, finding relevant examples and involving the stakeholders in the process of finding solutions.

I will be working with Haagerup this summer, we will be presenting together with Willi Rütten of the European Journalism Centre a workshop on ‘constructive innovation journalism’ at the Deutsche Welle Global Media Summit, 3–5 June 2009.