Toggle light / dark theme

The growing popularity of lithium-ion batteries in recent years has put a strain on the world’s supply of cobalt and nickel—two metals integral to current battery designs—and sent prices surging.

In a bid to develop alternative designs for lithium-based batteries with less reliance on those , researchers at the Georgia Institute of Technology have developed a promising new and system that replaces expensive metals and traditional liquid electrolyte with lower cost transition metal fluorides and a .

“Electrodes made from transition metal fluorides have long shown stability problems and rapid failure, leading to significant skepticism about their ability to be used in next generation batteries,” said Gleb Yushin, a professor in Georgia Tech’s School of Materials Science and Engineering. “But we’ve shown that when used with a solid polymer electrolyte, the metal fluorides show remarkable stability—even at —which could eventually lead to safer, lighter and cheaper lithium-ion batteries.”

Researchers at the University of California, Los Angeles (UCLA) and the California NanoSystems Institute in Los Angeles have recently developed a soft swimming robot based on a self-sustained hydrogel oscillator. This robot, presented in a paper published in Science Robotics, operates under constant light input without the need for a battery.

“When I shone on a soft, fast responsive hydrogel pillar, I observed the pillar started to oscillate around the optical beam,” Yusen Zhao, a Ph.D. student involved in the research, said. “It looked very intriguing to me, and I wondered: How can a constant input produce intermittent output? Under what conditions does the oscillation happen? Would it be powerful enough to propel and swim in water, and eventually lead to solar sails? With these questions, I continued systematic studies aiming to achieve these objectives.”

Zhao and his colleagues developed a soft oscillator made of a light-responsive soft gel, which is molded into the shape of a pillar or strip. When light hits a spot of this gel pillar, it is automatically absorbed and converted into heat. The locally heated spot on the causes it to eject some of its water and shrink in volume, resulting in its tail bending towards the light source.

Superhard materials can slice, drill and polish other objects. They also hold potential for creating scratch-resistant coatings that could help keep expensive equipment safe from damage.

Now, science is opening the door to the development of new materials with these seductive qualities.

Researchers have used computational techniques to identify 43 previously unknown forms of that are thought to be stable and superhard—including several predicted to be slightly harder than or nearly as hard as diamonds. Each new carbon variety consists of carbon atoms arranged in a distinct pattern in a .

Researchers from Chalmers University of Technology and Politecnico di Milano have identified a crucial new aspect of charge density modulations in cuprate high critical temperature superconductors. They have identified a new electron wave which could help reveal some of the mysteries about superconducting materials. The findings are published in the journal Science.

High critical temperature superconductors have a variable charge density, meaning that their electrical charge is unevenly distributed. This partly results from what are known as ‘charge density waves’, which were discovered a few years ago. But these have only been observed to exist sporadically, under certain conditions. Therefore, they were not believed to be a contributing factor to the materials’ superconducting properties.

What the researchers have now discovered, however, is an additional aspect to the variable charge density, which they term “charge density fluctuations”. These have been identified as an additional charge modulation, collective and with a shorter correlation length. They are very pervasive, meaning that compared to the conventional charge density waves, they are present at a much greater range of temperatures, up to room temperature and beyond, and at different levels of oxygen doping.

Researchers around the world are constantly looking for ways to enhance or transcend the capabilities of electronic devices, which seem to be reaching their theoretical limits. Undoubtedly, one of the most important advantages of electronic technology is its speed, which, albeit high, can still be surpassed by orders of magnitude through other approaches that are not yet commercially available.

A possible way of surpassing traditional electronics is through the use of (AFM) materials. The electrons of AFM materials spontaneously align themselves in such a way that the overall magnetization of the material is practically zero. In fact, the order of an AFM material can be quantified in what is known as the ‘order parameter.’ Recent studies have even shown that the AFM order parameter can be ‘switched’ (that is, changed from one known value to another, really fast) using light or , which means that AFM materials could become the building blocks of future electronic devices.

However, the dynamics of the order-switching process are not understood because it is very difficult to measure the changes in the AFM order parameter in real time with high resolution. Current approaches rely on measuring only certain phenomena during AFM order switching and trying to obtain the full picture from there, which has proven to be unreliable for understanding other more intricate phenomena in detail. Therefore, a research team lead by Prof. Takuya Satoh from Tokyo Tech and researchers from ETH Zurich, developed a method for thoroughly measuring the changes in the AFM order of an YMnO3 crystal induced through optical excitation (that is, using a laser).

An international team of researchers led by the University of Tokyo has discovered a new material which, when rolled into a nanotube, generates an electric current if exposed to light. If magnified and scaled up, say the scientists, the technology could be used in future high-efficiency solar devices.

Based on some basic analysis of recent photos of SpaceX’s East Coast Starship facility, situated in Cocoa, Florida, SpaceX has almost certainly begun fabricating and staging hardware that will eventually become part of the company’s first Super Heavy booster prototype.

This is by no means surprising but it does confirm the reasonable assumption that SpaceX is already working hard to ensure that the first Super Heavy booster(s) can be assembled as quickly as possible. Additionally, SpaceX appears to have started clearing brush in the process of preparing to transport the Florida orbital Starship prototype (“Mk2”) to SpaceX’s Pad 39A launch facilities, dozens of miles away.

The aforementioned “basic analysis” is more or less comprised of looking for and counting the massive steel rings that SpaceX has decided to build its Starships (and Super Heavy boosters) out of. By all appearances, SpaceX is doing nearly everything short of milling and preparing the raw materials (steel) internally. In Florida and Texas, giant rolls of stainless steel are delivered to the worksite by semi-truck, where SpaceX technicians prepare the rolls for sectioning (likely with a plasma torch or laser) and any necessary machining.

As vital as clean water is for human life, unfortunately it’s not always easy for people to get enough. Adding insult to injury, the stuff is basically always floating around us in the air, unreachable. Now, researchers from the University of California Berkeley have developed a device that can wring drinkable amounts of water out of even the driest air.

The team says this new water harvester can produce more than 1.3 L (5.4 US cups) of water per day per kilogram (2.2 lb) of a particular water-absorbing material. This can be done even at less than 40 percent relative humidity. That’s not a whole lot of water, but it is more than enough to keep a person alive, if a situation was that dire.

The harvester was put to the test over three days in the Mojave Desert. During that time, the device produced 0.7 L (3 cups) of water per kg of material, and even on the driest day the harvester managed to wring 200 ml (6 oz) of water out of air that had an extremely low relative humidity of just seven percent.

It would be much easier to escape Earth’s gravity if you could skip the energy-intensive rockets.

That’s the idea behind the Spaceline, a newly-proposed type of space elevator that would link the Earth and the Moon in a bid drastically cut the cost of space travel.

Described in research published to the preprint server ArXiv by researchers at Columbia University and Cambridge University, the Spaceline would be tethered to the surface of the Moon and dangle down into geostationary orbit around the Earth like a plumb bob, waiting for astronauts to latch on and ride into the cosmos. The proof-of-concept paper found that the Spaceline could be constructed out of materials that exist today, raising the possibility of easier space travel and perhaps even orbital settlements.