Toggle light / dark theme

Listen to famed biogerontolgist Aubrey de Grey explain the OncoSENS approach to curing ALT-Cancer (https://www.lifespan.io/campaigns/sens-control-alt-delete-cancer/) and how this is a vital part of overcoming the ill-effects of aging. This presentation is part of the Designing New Advances conference held by the Institute of Exponential Sciences in the Netherlands.

Read more

Tempus fugit. I’m just about old enough to remember a time in which 2020 was the distant future of science fiction novels, too far away to be thinking about in concrete terms, a foreign and fantastical land in which anything might happen. Several anythings did in fact happen, such as the internet, and the ongoing revolution in biotechnology that has transformed the laboratory world but leaks into clinics only all too slowly. Here we are, however, close enough to be making plans and figuring out what we expect to be doing when the third decade of the 21st century gets underway. The fantastical becomes the mundane. We don’t yet have regeneration of organs and limbs, or therapies to greatly extend life, but for these and many other staples of golden age science fiction, the scientific community has come close enough to be able to talk in detail about the roads to achieving these goals.

Of all the things that researchers might achieve with biotechnology in the near future, control over aging is by far the most important. Aging is the greatest cause of death and suffering in the world, and none of us are getting any younger. That may change, however. SENS, the Strategies for Engineered Negligible Senescence, is a synthesis of the scientific view of aging as an accumulation of specific forms of cell and tissue damage, pulling in a century of evidence from many diverse areas of medical science to support this conclusion. Aging happens because the normal operation of our cellular biochemistry produces damage, wear and tear at the level of molecules and molecular structures, and some of that damage accumulates to cause failure of tissues and organs, and ultimately death.

Read more

Philadelphia, PA, USA / Mexico City, Mexico — Bioquark, Inc., (www.bioquark.com) a life sciences company focused on the development of novel bioproducts for complex regeneration, disease reversion, and aging, and RegenerAge SAPI de CV, (www.regenerage.clinic/en/) a clinical company focused on translational therapeutic applications of a range of regenerative and rejuvenation healthcare interventions, have announced a collaboration to focus on novel combinatorial approaches in human disease and wellness. SGR-Especializada (http://www.sgr-especializada.com/), regulatory experts in the Latin American healthcare market, assisted in the relationship.

regenerage

“We are very excited about this collaboration with RegenerAge SAPI de CV,” said Ira S. Pastor, CEO, Bioquark Inc. “The natural synergy of our cellular and biologic to applications of regenerative and rejuvenative medicine will make for novel and transformational opportunities in a range of degenerative disorders.”

As we close in on $7 trillion in total annual health care expenditures around the globe ($1 trillion spent on pharmaceutical products; $200 billion on new R&D), we are simultaneously witnessing a paradoxical rise in the prevalence of all chronic degenerative diseases responsible for human suffering and death.

With the emergence of such trends including: personalization of medicine on an “n-of-1” basis, adaptive clinical design, globalization of health care training, compassionate use legislative initiatives for experimental therapies, wider acceptance of complementary medical technologies, and the growth of international medical travel, patients and clinicians are more than ever before, exploring the ability to access the therapies of tomorrow, today.

recovering patient

The estimate of the current market size for procedural medical travel, defined by medical travelers who travel across international borders for the purpose of receiving medical care, is in the range of US $40–55 billion.

Additionally, major clinical trial gaps currently exist across all therapeutic segments that are responsible for human suffering and death. Cancer is one prime example. As a leading cause of morbidity and mortality worldwide for many decades, today there are approximately 14 million new cases diagnosed each year, with over 8 million cancer related deaths annually. It is estimated that less than 5% of these patients, take the initiative to participate in any available clinical studies.

“We look forward to working closely with Bioquark Inc. on this exciting initiative,” said Dr. Joel Osorio, Chief of Clinical Development RegenerAge SAPI de CV. “The ability to merge cellular and biologic approaches represents the next step in achieving comprehensive regeneration and disease reversion events in a range of chronic diseases responsible for human suffering and death.”

bioquarklogo

About Bioquark, Inc.
Bioquark Inc. is focused on the development of natural biologic based products, services, and technologies, with the goal of curing a wide range of diseases, as well as effecting complex regeneration. Bioquark is developing both biological pharmaceutical candidates, as well as products for the global consumer health and wellness market segments.

About RegenerAge SAPI de CV

RegenerAge SAPI de CV is a novel clinical company focused on translational therapeutic applications, as well as expedited, experimental access for “no option” patients, to a novel range of regenerative and reparative biomedical products and services, with the goal of reducing human degeneration, suffering, and death.

https://www.youtube.com/watch?v=qsNNUEx5OkU&t=0s

A fairly recent video where Aubrey de Grey talks about the future of regenerative medicine and how we will treat age related diseases.


Dr. Aubrey de Grey of the SENS Research Foundation gives a lecture and answers questions in Spain, April 2016.

Help end aging by donating to SENS http://www.sens.org/

Read more

Telomerase, an enzyme naturally found in the human organism, is the closest of all known substances to a “cellular elixir of youth.” In a recent study published in The New England Journal of Medicine, Brazilian and US researchers show that sex hormones can stimulate production of this enzyme.

The strategy was tested in patients with genetic diseases associated with mutations in the gene that codes for telomerase, such as aplastic anemia and pulmonary fibrosis.

READ MORE ON AGÊNCIA FAPESP

Read more

A new story with lots of transhumanism in it:


Zoltan Istvan is in the running for President of the United States. You may not have heard of him, but if elected, he hopes to put an end to death. All of it. (Yes, seriously).

There are people right now walking around with artificial hearts – something that many people believed would not happen for another decade (or even longer). There are quadriplegics no longer bound to a wheelchair, but walk with exoskeleton technology. There are hundreds of thousands of people with brain implants that help them with various ailments. In short, recent technological breakthroughs like these open up the possibility for humans to enhance themselves and their health—and perhaps to even become immortal (someday).

As you can imagine, such radical developments demand strong, intelligent and science-focused political leadership. That is why Zoltan Istvan, of the Transhumanist Party, says that he is running for U.S. President this year, as the #ScienceCandidate.

He thinks that, by encouraging America to embrace science and technology, we could transform our lives and the planet by overcoming poverty, aging, and even death…and all in the coming generation.

Read more

NANOG. I just like the sound of it.


In the biology lab-based equivalent of Indiana Jones and the Last Crusade, researchers from the University at Buffalo have uncovered the human body’s internal fountain of eternal youth, in the form of a gene called NANOG. When expressing this gene in aged stem cells, the team found that it reactivated certain processes that had become exhausted, restoring their ability to develop into fully functioning muscle cells.

As we go about our lives, wear and tear causes the body’s cells to die via a process called senescence. When this occurs, new cells are created from stem cells in order to replace those that have become senescent, although when we hit old age our stem cells become depleted or unable to develop.

Mesenchymal stem cells (MSCs), for example, normally develop into smooth muscle cells (SMCs). However, once we reach a certain age, these MSCs lose their efficacy and start generating SMCs that lack a protein called actin, rendering them unable to contract like healthy muscle tissue should.

Read more

Sure, chatbots are useful for service industries like hospitality and food delivery, but in health care? Some groups are testing the use of chatbots to retrieve medical information from within a messaging app. At first glance, that seems a bit impersonal, but a closer look reveals a wide range of use cases where bots could make your next visit to the hospital, doctor’s office, or pharmacy faster and more effective.

Let’s run this back a bit. If you’re not familiar with bots, here’s a brief explanation. Bots are software applications that run automated tasks or scripts that serve as shortcuts for completing a certain job, but they do it faster (a lot faster) and with verve. And in health care, we spend a lot of time spent generating and retrieving information.

By putting a trained army of bots inside an application — smartphone, desktop, whatever-top — health care workers can rapidly improve throughput by simply cutting out a bunch of steps. That’s something most care providers today would welcome, especially with millions of new people entering the system as a result of the Affordable Care Act and the aging of baby boomers. With the crush of increased data entry and new regulations, costs and rote work are skyrocketing.

Read more