Toggle light / dark theme

In America, at least 17 people a day die waiting for an organ transplant. But instead of waiting for a donor to die, what if we could someday grow our own organs?

Last week, six years after NASA announced its Vascular Tissue Challenge, a competition designed to accelerate research that could someday lead to artificial organs, the agency named two winning teams. The challenge required teams to create thick, vascularized human organ tissue that could survive for 30 days.

The two teams, named Winston and WFIRM, both from the Wake Forest Institute for Regenerative Medicine, used different 3D-printing techniques to create lab-grown liver tissue that would satisfy all of NASA’s requirements and maintain their function.

“We did take two different approaches because when you look at tissues and vascularity, you look at the body doing two main things,” says Anthony Atala, team leader for WFIRM and director of the institute.

The two approaches differ in the way vascularization—how blood vessels form inside the body—is achieved. One used tubular structures and the other spongy tissue structures to help deliver cell nutrients and remove waste. According to Atala, the challenge represented a hallmark for bioengineering because the liver, the largest internal organ in the body, is one of the most complex tissues to replicate due to the high number of functions it performs.


Researchers used 3D-printing to create human liver tissue that could soon be tested on the International Space Station.

HOMA calculator: https://www.omnicalculator.com/health/homa-ir.

Papers referenced in the video:
Growth hormone-releasing hormone disruption extends lifespan and regulates response to caloric restriction in mice.
https://pubmed.ncbi.nlm.nih.gov/24175087/

Glucose regulation and oxidative stress in healthy centenarians.
https://pubmed.ncbi.nlm.nih.gov/12543271/

Distribution of blood glucose and prevalence of diabetes among centenarians and oldest-old in China: based on the China Hainan Centenarian Cohort Study and China Hainan Oldest-old Cohort Study.
https://pubmed.ncbi.nlm.nih.gov/32643047/

Prevalence and Ethnic Pattern of Diabetes and Prediabetesin China in 2013
https://pubmed.ncbi.nlm.nih.gov/28655017/

Families enriched for exceptional longevity also have increased health-span: findings from the long life family study.
https://pubmed.ncbi.nlm.nih.gov/24350207/

Experts predict that we’ll be able to live up to 20% longer over the next 100 years. Here’s how humans are trying to live forever. Andrea Schmitz and Benji Jones Apr 3, 2019, 12:00 PM @ These potential treatments for aging could unlock cures to a range of age-related illnesses, from cancer to heart disease – Charlotte Hu Aug 20, 2018, 1:21 PM @ Animals that defy the rules of aging — like naked mole rats — could help scientists unravel the secrets to longevity – Charlotte Hu Aug 15, 2018, 2:54 PM @ Everything you thought you knew about aging is wrong – Erin Brodwin Apr 27, 2016, 12:13 PM *© 2021 Insider Inc. @ Other very important information, images, YouTube Videos (Ray Kurzweil – Physical Immortality – 3 de jan. de 2017 & Ray Kurzweil + Disruptive Technologies and Dangerous Ideas – 5 de dez. de 2017), websites, social networks and links.

Hello everybody! In this episode, we interview Felix Werth, a trully hero of the rejuvenation field: in 2015 he created a party in Germany to defend more investments in our field, and his party is contesting the general elections in the country on September 26th 2021! However, he needs our help right now, since his party has until July 19th to collect enough signatures to participate in 14 German states covering 98% of the country’s population. So be sure to check the interview and the party’s website (https://parteifuergesundheitsforschung.de) to see how you can help.


In this episode of ImmortaliCast, Nicolas and Nina talk to Felix Werth, the founder and leader of the German Party for Health Research, a party with a single issue: 10% of the government budget should be spent on research for the development of treatments of age-related diseases. The party will contest the German general elections of September 26th 2021.

Party for Health Research website: https://parteifuergesundheitsforschung.de.

Fundraising page: https://parteifuergesundheitsforschung.de/superwahljahr-spendenaktion.

ImmortaliCast website: https://www.ntzplural.com/immortalicast.

ImmortaliCast Patreon: https://www.patreon.com/immortalicast.

ImmortaliCast Padrim: https://www.padrim.com.br/immortalicast.

ImmortaliCast e-mail: [email protected].

We may have progressed beyond drinking mercury to try to prolong life. Instead, by a British government estimate, we have what may be called the ‘immortality industrial research complex’ – using genomics, artificial intelligence and other advanced sciences, and supported worldwide by governments, big business, academics and billionaires – that’s worth US$110 billion today and US$610 billion by 2025.


We are living longer than at any time in human history. And while the search is on for increased longevity if not immortality, new research suggests biological constraints will ultimately determine when you die.

This product came out months ago with some shocking numbers as to effect. But those effects were in mice tests. 10–20% increase in lifespan and 55% increase in healthspan. It is AKG, Rejuvant, it’s a product you can buy now. There will be a part 2 of this interview so I hope to hear about human data.


Here we present an interview with Tom Weldon the founder and CEO of Ponce de Leon Health, which makes Rejuvant a Calcium AKG based supplement. In this video Tom talks through the process and reasons for selecting CaAKG. He also talks about some of the other results that they found in their tests, especially with respect to mixing different supplements and their combined effects.

This it part 1 of a two part series. In part 2 we talk about his personal experience and on going clinical trials. With that let me start the interview.

Links to Rejuvant.
https://www.rejuvant.com/
Ponce de Leon Health.
https://pdlhealth.com/

The paper from the Buck institute mentioned in the call.
Alpha-Ketoglutarate, an Endogenous Metabolite, Extends Lifespan and Compresses Morbidity in Aging Mice.
https://pubmed.ncbi.nlm.nih.gov/32877690/

***************************************************************************
If you would like to support our channel, we’d love a coffee…thank you! https://www.buymeacoffee.com/mhealthspan.

Health claims Disclosure: Information provided on this video is not a substitute for direct, individual medical treatment or advice. It is the responsibility of you and your healthcare providers to make all decisions regarding your health. Products or services mentioned in this video are not a recommendation or medical advice.

Audio Copyright Disclaimer:
Please note that we have full authorization to the music that we used in our videos as they were created using the service WeVideo which provides the rights to the music. The rights are detailed in the terms of use that can be reviewed here https://www.wevideo.com/terms-of-use and any following inquiries should be addressed to [email protected].

There are Sirt6 activators on the market, but since we are not seeing any major news about results I would question their value.


SPONSOR: Longevity. Technology — https://www.longevity.technology/?utm_source=SSS&utm_medium=YouTube&utm_campaign=Sirt6

Sirtuins are highly conserved proteins that are involved in a variety of important cellular processes such as DNA repair, metabolism and circadian rhythms. The mammalian sirtuins (SIRT1-7) are a family of proteins that carry out NAD+-dependent protein deacylation and mono-ADP-ribosylation. These modifications on proteins can influence their stability, localisation within a cell and activity.

In the late 90s interest in sirtuins bloomed as it was found yeast lived 30% longer when they had an additional copy of a yeast sirtuin, Sir2. Similar studies have now been performed in mice, but whilst overexpression of SIRT1 in mice does not result in lifespan extension, overexpression of SIRT6 does. This has led to SIRT6 being referred to as the longevity sirtuin. However, there seems to be some sex-and mouse strain-dependent differences. So, in the remainder of the video, we will discuss what you need to know about SIRT6 including it’s proposed cellular activities, it’s association with longevity and how SIRT6 activation using allosteric activators could have future therapeutic potential.

TIMESTAMPS:
Intro — 00:00
Sirtuins — 00:45
SIRT1, SIRT6 and longevity — 03:00
SIRT6 and DNA damage — 08:30
Activating SIRT6 — 09:50
Additional thoughts — 11:45

#longevity #science #latestresearch #TSSS

REFERENCES:
Roichman, A., Elhanati, S., Aon, M.A. et al. Restoration of energy homeostasis by SIRT6 extends healthy lifespan. Nat Commun 12, 3208 (2021). https://doi.org/10.1038/s41467-021-23545-7
Regulation of SIRT6 protein levels by nutrient availability — https://doi.org/10.1016/j.febslet.2008.01.019
Regulation of SIRT1 protein levels by nutrient availability — https://doi.org/10.1016/j.febslet.2008.06.005
Kanfi, Y., Naiman, S., Amir, G. et al. The sirtuin SIRT6 regulates lifespan in male mice. Nature 483218–221 (2012). https://doi.org/10.1038/nature10815
Sirtuin activators and inhibitors: Promises, achievements, and challenges — https://doi.org/10.1016/j.pharmthera.2018.03.004
SIRT6 Is Responsible for More Efficient DNA Double-Strand Break Repair in Long-Lived Species — https://doi.org/10.1016/j.cell.2019.03.043
Huang, Z., Zhao, J., Deng, W. et al. Identification of a cellularly active SIRT6 allosteric activator. Nat Chem Biol 14, 1118–1126 (2018). https://doi.org/10.1038/s41589-018-0150-0

Check out @LifeXtenShow latest video — https://www.youtube.com/watch?v=q03CuLLLzHM

The population on Earth is increasingly growing and people are expected to live longer in the future. Thus, better and more reliable therapies to treat human diseases such as Alzheimer’s and cardiovascular diseases are crucial. To cope with the challenge of ensuring healthy aging, a group of international scientists investigated the potential of biosynthesising several polyamines and polyamines analogs with already known functionalities in treating and preventing age-related diseases.

One of the most interesting molecules to study was spermidine, which is a natural product already present in people’s blood and an inducer of autophagy that is an essential cellular process for clearing damaged proteins, e.g., misfolded proteins in brain cells that can cause Alzheimer’s. When people get older the level of spermidine in the blood decrease and dietary supplements, or certain are needed to maintain a stable and high level of spermidine in the blood. However, those products are difficult to produce with traditional chemistry due to their structural complexity and extraction of natural resources is neither a commercially viable nor a sustainable approach.

Therefore, the researchers instead decided to open their biochemical toolbox and use classical metabolic engineering strategies to engineer the yeast metabolism to produce polyamines and polyamines analogs.

Research conducted by Qiang et al has discovered a link between a protein in red blood cells and age-related decline in cognitive performance. Published in the open access journal PLOS Biology on 17th June 2021, the study shows that depleting mouse blood of the protein ADORA2B leads to faster declines in memory, delays in auditory processing, and increased inflammation in the brain.

As around the world increase, so are the number of people who will experience . Because the amount of oxygen in the blood also declines with age, the team hypothesized that aging in the brain might be naturally held at bay by adenosine receptor A2B (ADORA2B), a protein on the membrane of which is known to help release oxygen from the blood cells so it can be used by the body. To test this idea, they created mice that lacked ADORA2B in their blood and compared behavioral and physiological measures with control mice.

The team found that as the mice got older, the hallmarks of cognitive decline—poor memory, hearing deficits, and in the brain—were all greater in the mice lacking ADORA2B than in the control mice. Additionally, after experiencing a period of oxygen deprivation, the behavioral and physiological effects on young mice without ADORA2B were much greater than those on normal young mice.