Toggle light / dark theme

An aging/longevity/junk dna link.

~~~


The human body is essentially made up of trillions of living cells. It ages as its cells age, which happens when those cells eventually stop replicating and dividing. Scientists have long known that genes influence how cells age and how long humans live, but how that works exactly remains unclear. Findings from a new study led by researchers at Washington State University have solved a small piece of that puzzle, bringing scientists one step closer to solving the mystery of aging.

A research team headed by Jiyue Zhu, a professor in the College of Pharmacy and Pharmaceutical Sciences, recently identified a DNA region known as VNTR2-1 that appears to drive the activity of the telomerase gene, which has been shown to prevent aging in certain types of . The study was published in the journal Proceedings of the National Academy of Sciences (PNAS).

The telomerase gene controls the activity of the telomerase enzyme, which helps produce telomeres, the caps at the end of each strand of DNA that protect the chromosomes within our cells. In normal cells, the length of telomeres gets a little bit shorter every time cells duplicate their DNA before they divide. When telomeres get too short, cells can no longer reproduce, causing them to age and die. However, in certain cell types—including reproductive cells and —the activity of the telomerase gene ensures that telomeres are reset to the same length when DNA is copied. This is essentially what restarts the aging clock in new offspring but is also the reason why cells can continue to multiply and form tumors.

Scientists at Cambridge and Leeds have successfully reversed age-related memory loss in mice and say their discovery could lead to the development of treatments to prevent memory loss in people as they age.

In a study published today in Molecular Psychiatry, the team show that changes in the extracellular matrix of the brain — ‘scaffolding’ around nerve cells—lead to loss of with aging, but that it is possible to reverse these using genetic treatments.

Recent evidence has emerged of the role of perineuronal nets (PNNs) in neuroplasticity—the ability of the brain to learn and adapt—and to make memories. PNNs are cartilage-like structures that mostly surround inhibitory neurons in the brain. Their main function is to control the level of plasticity in the brain. They appear at around five years old in humans, and turn off the period of enhanced plasticity during which the connections in the brain are optimized. Then, plasticity is partially turned off, making the brain more efficient but less plastic.

“What is exciting about this is that although our study was only in mice, the same mechanism should operate in humans – the molecules and structures in the human brain are the same as those in rodents,” says Fawcett. “This suggests that it may be possible to prevent humans from developing memory loss in old age.”


An intriguing new study from researchers in the United Kingdom is proposing an innovative method to treat age-related memory loss. The preclinical research shows memory decline in aging mice can be reversed by manipulating the composition of structures in the brain known as perineuronal nets.

Perineuronal nets (PNNs) are structures in the brain that envelop certain subsets of neurons, helping stabilize synaptic activity. They essentially put the brakes on the neuroplasticity seen in the first few years of life.

Although PNNs are vital to the effective functioning of a mature adult brain, by their very nature they also limit future neural plasticity and adaptability. A new wave of research is beginning to investigate ways to modulate PNNs in adult brains in the hope of treating a variety of diseases from diabetes to post-traumatic stress disorder (PTSD).

The SENS Research Foundation has apparently already raised four times its annual income thanks to the PulseChain Airdrop.

The PulseChain airdrop supporting aging research

Richard Heart, the founder of HEX, is about to launch a new cryptocurrency called PulseChain. As part of that launch, he has also arranged an airdrop to give away some of the new cryptocurrency in order to support the SENS Research Foundation (SRF).

Paper referenced in the video:

Potential reversal of epigenetic age using a diet and lifestyle.
intervention: a pilot randomized clinical trial.
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8064200/

Patreon link:
https://www.patreon.com/MichaelLustgartenPhD

We probably at this point should make all animals immortal: 3.


The advance promises to unlock new insights into human biology and disease, aiding in the study of everything from the developing immune system to tissue regeneration to skin cancer.

“Studying biodiversity is not just about exploring the biology of a bunch of interesting organisms, but ultimately for a better understanding of human biology,” developmental biologist and lead study author Hiroshi Kiyonari said via email.

Five years ago, his team began to systematically work out the problem that had so long plagued the opossum field. The first barrier was to collect zygotes (fertilized eggs) at the right time. Ideally, that would be before they began dividing, when they are still a single cell. If you inject CRISPR at this stage, you can be sure all the resulting animals’ cells will carry whatever DNA changes you make. Doing it later can mean some cells but not others will be edited — a less ideal outcome known as mosaicism. Another benefit of collecting fertilized eggs as early as possible is that the shell coat hasn’t had time to thicken.

The human trial of plasma dilution started in Russia last week. The lead researcher is checking how the biomarkers of aging will change in response to 110% plasma replacement during the therapy, and the difference between the group with albumin addition and without albumin. The trial is open to both Russian citizens and people from other countries. It is a hybrid model where part of the expenditures is paid by the volunteers, and part is provided by the patron of the research. This model allowed to get the trial started in record time — less than 9 months from conception to the start date.

The research group wants to test plasmapheresis in combination with other longevity therapies next to see if plasma dilution prior to the other therapy can enhance the results.


Are you interested in longevity news? Come over to https://youtube.com/x10show for more!

Does blood hold the secret to aging? That’s kind of what an ongoing clinical trial in Russia is trying to find out. Previous experiments carried out in aged mice suggest that plasma dilution has positive effects on cognition and neuroinflammation, and now scientists want to see if the procedure can positively impact humans too.

By the way, don’t forget our conference Ending Age-Related Diseases 2021 is coming soon! Follow this link to learn more and get your ticket:
https://www.lifespan.io/ending-age-related-diseases-2021-conference/

LIKE WHAT WE DO?
⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺
If you’d like to help us run this show and/or help Lifespan.io end age-related diseases, you can become a Lifespan Hero: https://lifespan.io/hero?source=X10-desc. Your support means the world to us!

FOOTAGE, IMAGES, AND MUSIC CREDITS
⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺
Stock photos: Shutterstock.com.
Stock footage: Videoblocks.com.
⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺⎺
#clinicaltrials #aging #longevity #parabiosis #plasmapheresis #blood #transfusions

varying in age between 18 and 88, only 33% of them said they would be willing to take a pill that allowed them to stay alive at their current age.

If you were asked to participate in this survey, would you be willing to take an immortality pill? Would it matter what age you were before taking it?

In The Last Generation to Die, we explore the difficult conversation of what is to be done for the elderly who might miss out on the benefits of enhanced longevity. But if these companies somehow achieved their goal, however farfetched, that conversation would become moot.

Would you want to resurrect a lost loved one if given the opportunity?