Summary: A new AI algorithm recognizes the complex range of emotions invoked when people listen to pieces of music.
Source: UPF Barcelona.
Music has been of great importance throughout human history, and emotions have always been the ultimate reason for all musical creations. When writing a song a composer tries to express a particular feeling, causing concert-goers to perhaps laugh, cry or even shiver.
With the increasing demand for data science approaches and cognitive technologies across all industries, organizations are learning how to successfully implement and manage newer, more intelligent tools and systems. What are the challenges that enterprises encounter when adopting AI and ML models for their organizations, and how can teams work to overcome these obstacles?
At an upcoming Data for AI event, Anil Kumar, Executive Director — Head of AI Industrialization at Verizon will be sharing in particular the ways that Verizon has leveraged AI to overcome some of their key challenges. This past January, the Machine Learning Lifecycle 2021 Conference featured Radha Sankaran, Executive Director of Algorithmic Customer Experiences at Verizon Wireless, where she shared some insight into the current state of AI usage and its challenges, techniques, and impacts. At the upcoming Data for AI virtual event, Anil Kumar, also from Verizon Wireless, will be speaking more on his experiences.
How will future AI systems make the most ethical choices for all of us?
Artificial intelligence is already making decisions in the fields of business, health care, and manufacturing. But AI algorithms generally still get help from people applying checks and making the final call.
What would happen if AI systems had to make independent decisions and ones that could mean life or death for humans?
Unlike humans, robots lack a moral conscience and follow the “ethics” programmed into them. At the same time, human morality is highly variable. The “right” thing to do in any situation will depend on who you ask.
The AI algorithm is more efficient in distinguishing false positives from the real stuff than human experts.
A new artificial intelligence algorithm has discovered over 300 previously unknown exoplanets in data gathered by a now-defunct exoplanet-hunting telescope.
The Kepler Space Telescope, NASA’s first dedicated exoplanet hunter, has observed hundreds of thousands of stars in the search for potentially habitable worlds outside our solar system. The calatog of potential planets it had compiled continues generating new discoveries even after the telescope’s demise. Human experts analyze the data for signs of exoplanets. But a new algorithm called ExoMiner can now mimic that procedure and scour the catalog faster and more efficiently.
When people think of artificial intelligence, the images that often come to mind are of the sinister robots that populate the worlds of “The Terminator,” “i, Robot,” “Westworld,” and “Blade Runner.” For many years, fiction has told us that AI is often used for evil rather than for good.
But what we may not usually associate with AI is art and poetry — yet that’s exactly what Ai-Da, a highly realistic robot invented by Aidan Meller in Oxford, central England, spends her time creating. Ai-Da is the world’s first ultra-realistic humanoid robot artist, and on Friday she gave a public performance of poetry that she wrote using her algorithms in celebration of the great Italian poet Dante.
The recital took place at the University of Oxford’s renowned Ashmolean Museum as part of an exhibition marking the 700th anniversary of Dante’s death. Ai-Da’s poem was produced as a response to the poet’s epic “Divine Comedy” — which Ai-Da consumed in its entirety, allowing her to then use her algorithms to take inspiration from Dante’s speech patterns, and by using her own data bank of words, create her own work.
Watch the newest video from Big Think: https://bigth.ink/NewVideo. Learn skills from the world’s top minds at Big Think+: https://bigthink.com/plus/
Everything we do as living organisms is dependent, in some capacity, on time. The concept is so complex that scientists still argue whether it exists or if it is an illusion. In this video, astrophysicist Michelle Thaller, science educator Bill Nye, author James Gleick, and neuroscientist Dean Buonomano discuss how the human brain perceives of the passage of time, the idea in theoretical physics of time as a fourth dimension, and the theory that space and time are interwoven. Thaller illustrates Einstein’s theory of relativity, Buonomano outlines eternalism, and all the experts touch on issues of perception, definition, and experience. Check Dean Buonomano’s latest book Your Brain Is a Time Machine: The Neuroscience and Physics of Time at https://amzn.to/2GY1n1z.
TRANSCRIPT: MICHELLE THALLER: Is time real or is it an illusion? Well, time is certainly real but the question is what do we mean by the word time? And it may surprise you that physicists don’t have a simple answer for that. JAMES GLEICK: Physicists argue about and physicists actually have symposia on the subject of is there such a thing as time. And it’s also something that has a traditional in philosophy going back about a century. But, I think it’s fair to say that in one sense it’s a ridiculous idea. How can you say time doesn’t exist when we have such a profound experience of it first of all. And second of all we’re talking about it constantly. I mean we couldn’t get, I can’t get through this sentence with out referring to time. I was going to say we couldn’t get through the day without discussing time. So, obviously when a physicist questions the existence of time they are trying to say something specialized, something technical. BILL NYE: Notice that in English we don’t have any other word for time except time. It’s unique. It’s this wild fourth dimension in nature. This is one dimension, this is one dimension, this is one dimension and time is the fourth dimension. And we call it the fourth dimension not just in theoretical physics but in engineering. I worked on four dimensional autopilots so you tell where you want to go and what altitude it is above sea level and then when you want to get there. Like you can’t get there at any time. GLEICK: Einstein or maybe I should say more properly Minkowski, his teacher and contemporary, offers a vision of space-time as a single thing, as a four dimensional block in which the past and the future are just like spatial dimensions. They’re just like north and south in the equations of physics. And so you can construct a view of the world in which the future is already there and you can say, and physicists do say something very much like this, that in the fundamental laws of physics there is no distinction between the past and the future. And so if you’re playing that game you’re essentially saying time as an independent thing doesn’t exist. Time is just another dimension like space. Again, that is in obvious conflict with our intuitions about the world. We go through the day acting as though the past is over and the future has not yet happened and it might happen this way or it might happen that way. We could flip a coin and see. We tend to believe in our gut that the future is not fully determined and therefore is different from the past. DEAN BUONOMANO: If the flow if time, if our subjective sense of the flow of time is an illusion we have this clash between physics and neuroscience because the dominant theory in physics is that we live in the block universe. And I should be clear. There’s no consensus. There’s no 100 percent agreement. But the standard view in physics is that, and this comes in large part from relativity, that we live in an eternalist universe, in a block universe in which the past, present and future is equally real. So, this raises the question of whether we can trust our brain to tell us that time is flowing. NYE: In my opinion time is both subjective and objective. What we do in science and engineering and in life, astronomy, is measure time as carefully as we can because it’s so important to our everyday world. You go to plant crops you want to know when to plant them. You want to know when to harvest them. If you want to have a global positioning system that enables you to determine which side of the street you’re on, from your phone you need to take into account both the traditional passage of time that you might be familiar with watching a clock here on the Earth’s surface, and the passage of time as it’s affected by the… Read the full transcript at https://bigthink.com/videos/does-time-exist
Women constitute a mere 22 per cent or less than a quarter of professionals in the field of AI and Data Science.
There is a troubling and persistent absence of women when it comes to the field of artificial intelligence and data science. Women constitute a mere 22 per cent or less than a quarter of professionals in this field, as says the report “Where are the women? Mapping the gender job gap in AI,” from The Turing Institute. Yet, despite low participation and obstacles, women are breaking the silos and setting an example for players out in the field of AI.
To honour their commitment and work done, we have listed some of the women innovators and researchers who have worked tirelessly and contributed significantly to the field of AI and data science. The list below is provided in no particular order.
The brainchild behind and the founder of The Algorithmic Justice League (AJL), Joy Buolamwini, has started the organisation that combines art and research to illuminate the social implications and harms of artificial intelligence. With her pioneering work on algorithmic bias, Joy opened the eyes of the world and brought out the gender bias and racial prejudices embedded in facial recognition systems. As a result, Amazon, Microsoft, and IBM all halted their facial recognition services, admitting that the technology was not yet ready for widespread usage. One can watch the famous documentary ‘Coded Bias’ to understand her work. Her contributions will surely pave the way for a more inclusive and diversified AI community in the near future.
Scientists have been able to trap antimatter particles using a combination of electric and magnetic fields. Antiprotons have been stored for over a year, while antimatter electrons have been stored for shorter periods of time, due to their lower mass. In 2011, researchers at CERN announced that they had stored antihydrogen for over 1,000 seconds.
While scientists have been able to store and manipulate small quantities of antimatter, they have not been able to answer why antimatter is so rare in the universe. According to Einstein’s famous equation E = mc2, energy should convert into matter and antimatter in equal quantities. And, immediately after the Big Bang, there was a lot of energy. Accordingly, we should see as much antimatter as matter in our universe, and yet we don’t. This is a pressing unsolved mystery of modern physics.
According to Einstein’s equations, as well as other modern theories of antimatter, antimatter should be exactly the same as ordinary matter, with only the electric charges reversed. Thus, antimatter hydrogen should emit light just like ordinary hydrogen does, and with exactly the same wavelengths. In fact, an experiment showing exactly this behavior was reported in early 2020. This was a triumph for current theories, but meant no explanation for the universe’s preference of matter was found.
To address the growing threat of cyberattacks on industrial control systems, a KAUST team including Fouzi Harrou, Wu Wang and led by Ying Sun has developed an improved method for detecting malicious intrusions.
Internet-based industrial control systems are widely used to monitor and operate factories and critical infrastructure. In the past, these systems relied on expensive dedicated networks; however, moving them online has made them cheaper and easier to access. But it has also made them more vulnerable to attack, a danger that is growing alongside the increasing adoption of internet of things (IoT) technology.
Conventional security solutions such as firewalls and antivirus software are not appropriate for protecting industrial control systems because of their distinct specifications. Their sheer complexity also makes it hard for even the best algorithms to pick out abnormal occurrences that might spell invasion.
Topic: Negative Energy, Quantum Information and Causality. Speaker: Adam Levine. Date: November 19, 2021
Einstein’s equations of gravity show that too much negative energy can lead to causality violations and causal paradoxes such as the so-called “grandfather paradox. In quantum mechanics, however, negative energies can arise from intrinsically quantum effects, such as the Casimir effect. Thus, it is not clear that gravity and quantum mechanics can be self-consistently combined. In this talk, Levine will discuss modern advances in understanding the connection between energy and causality in gravity and how quantum gravity avoids obvious paradoxes. He will also explore how this line of thought leads to new insights in quantum field theory, which governs particle physics.
As a physicist, Adam Levine’s research aims to understand the structure of entanglement in quantum field theories and quantum gravity through use of techniques from the study of conformal field theories, as well as quantum information theory and AdS/CFT. With support from the National Science Foundation, Adam is a long term Member in the School of Natural Sciences. He received his Ph.D. from University of California, Berkeley (2019), was a Graduate Fellow at the Kavli Institute for Theoretical Physics (2018), a National Defense Science and Engineering Graduate Fellow (2017−2020), and received the Jeffrey Willick Memorial Award for Outstanding Scholarship in Astrophysics from Stanford University (2015).