Toggle light / dark theme

http://cdn.singularityhub.com/wp-content/uploads/2015/05/10-years-exponential-change-1000x400.jpg

It’s hard to believe, but…

Ten years ago…

  • The first video was uploaded to YouTube.
  • Facebook, then just a year old, dropped “the” from its old URL “thefacebook.com” after acquiring “facebook.com” for $200K.
  • An early prototype of an autonomous car completed the DARPA Grand Challenge for the first time.
  • The term “drone” meant a military weapon system.
  • Bitcoin and blockchain didn’t exist, and wouldn’t be created for three more years.
  • Android was a small startup that Google had just acquired.
  • There were 6.4 billion humans on Earth, only ~1 billion were online, and none of them had heard of Uber or AirBnb. Read more

Until 2006 our Solar System consisted essentially of a star, planets, moons, and very much smaller bodies known as asteroids and comets. In 2006 the International Astronomical Union’s (IAU) Division III Working Committee addressed scientific issues and the Planet Definition Committee address cultural and social issues with regard to planet classifications. They introduced the “pluton” for bodies similar to planets but much smaller.

The IAU set down three rules to differentiate between planets and dwarf planets. First, the object must be in orbit around a star, while not being itself a star. Second, the object must be large enough (or more technically correct, massive enough) for its own gravity to pull it into a nearly spherical shape. The shape of objects with mass above 5×1020 kg and diameter greater than 800 km would normally be determined by self-gravity, but all borderline cases would have to be established by observation.

Third, plutons or dwarf planets, are distinguished from classical planets in that they reside in orbits around the Sun that take longer than 200 years to complete (i.e. they orbit beyond Neptune). Plutons typically have orbits with a large orbital inclination and a large eccentricity (noncircular orbits). A planet should dominate its zone, either gravitationally, or in its size distribution. That is, the definition of “planet” should also include the requirement that it has cleared its orbital zone. Of course this third requirement automatically implies the second. Thus, one notes that planets and plutons are differentiated by the third requirement.

As we are soon to become a space faring civilization, we should rethink these cultural and social issues, differently, by subtraction or addition. By subtraction, if one breaks the other requirements? Comets and asteroids break the second requirement that the object must be large enough. Breaking the first requirement, which the IAU chose not address at the time, would have planet sized bodies not orbiting a star. From a socio-cultural perspective, one could suggest that these be named “darktons” (from dark + plutons). “Dark” because without orbiting a star, these objects would not be easily visible; “tons” because in deep space, without much matter, these bodies could not meet the third requirement of being able to dominate its zone.

Taking this socio-cultural exploration a step further, by addition, a fourth requirement is that of life sustaining planets. The scientific evidence suggest that life sustaining bodies would be planet-sized to facilitate a stable atmosphere. Thus, a life sustaining planet would be named “zoeton” from the Greek zoe for life. For example Earth is a zoeton while Mars may have been.

Again by addition, one could define, from the Latin aurum for gold, “auton”, as a heavenly body, comets, asteroids, plutons and planets, whose primary value is that of mineral or mining interest. Therefore, Jupiter is not a zoeton, but could be an auton if one extracts hydrogen or helium from this planet. Another auton is 55 Cancri e, a planet 40 light years away, for mining diamonds with an estimated worth of $26.9x1030. The Earth is both a zoeton and an auton, as it both, sustains life and has substantial mining interests, respectively. Not all plutons or planets could be autons. For example Pluto would be too cold and frozen for mining to be economical, and therefore, frozen darktons would most likely not be autons.

At that time the IAU also did not address the upper limit for a planet’s mass or size. Not restricting ourselves to planetary science would widen our socio-cultural exploration. A social consideration would be the maximum gravitational pull that a human civilization could survive, sustain and flourish in. For example, for discussion sake, a gravitational pull greater the 2x Earth’s or 2g, could be considered the upper limit. Therefore, planets with larger gravitational pulls than 2g would be named “kytons” from the Antikythera mechanical computer as only machines could survive and sustain such harsh conditions over long periods of time. Jupiter would be an example of such a kyton.

Are there any bodies between the gaseous planet Jupiter and brown dwarfs? Yes, they have been named Y-dwarfs. NASA found one with a surface temperature of only 80 degrees Fahrenheit, just below that of a human. It is possible these Y-dwarfs could be kytons and autons as a relatively safe (compared to stars) source of hydrogen.

Taking a different turn, to complete the space faring vocabulary, one can redefine transportation by their order of magnitudes. Atmospheric transportation, whether for combustion intake or winged flight can be termed, “atmosmax” from “atmosphere”, and Greek “amaxi” for car or vehicle. Any vehicle that is bound by the distances of the solar system but does not require an atmosphere would be a “solarmax”. Any vehicle that is capable of interstellar travel would be a “starship”. And one capable of intergalactic travel would be a “galactica”.

We now have socio-cultural handles to be a space faring civilization. A vocabulary that facilitates a common understanding and usage. Exploration implies discovery. Discovery means new ideas to tackle new environments, new situations and new rules. This can only lead to positive outcomes. Positive outcomes means new wealth, new investments and new jobs. Let’s go forth and add to these cultural handles.

Ben Solomon is a Committee Member of the Nuclear and Future Flight Propulsion Technical Committee, American Institute of Aeronautics & Astronautics (AIAA), and author of An Introduction to Gravity Modification and Super Physics for Super Technologies: Replacing Bohr, Heisenberg, Schrödinger & Einstein (Kindle Version)

By — SingularityHubhttp://cdn.singularityhub.com/wp-content/uploads/2015/03/shutterstock_157122776-e1427493682272-1000x400.jpg

Modern machines, powerful and clever, have enabled us to attempt seemingly impossible tasks, like traveling to the moon. Now, mere decades after Apollo’s computers guided us to the lunar surface, millions carry vastly more processing power in their pockets. What once seemed science fiction—it’s possible today.

The incredible acceleration and exponential development of machines is driven by our unsatisfiable curiosity and constant drive for progress. And there is little doubt the rate of change will continue as our curious minds push into the unknown. Read more

— WiredAutonomous car from Delphi drives on Treasure Island in preparation for a cross-country trip from San Francisco to New York City in San FranciscoAn autonomous car just drove across the country.

Nine days after leaving San Francisco, a blue car packed with tech from a company you’ve probably never heard of rolled into New York City after crossing 15 states and 3,400 miles to make history. The car did 99 percent of the driving on its own, yielding to the carbon-based life form behind the wheel only when it was time to leave the highway and hit city streets.

This amazing feat, by the automotive supplier Delphi, underscores the great leaps this technology has taken in recent years, and just how close it is to becoming a part of our lives. Yes, many regulatory and legislative questions must be answered, and it remains to be seen whether consumers are ready to cede control of their cars, but the hardware is, without doubt, up to the task. Read More

By — SingularityHubhttp://cdn.singularityhub.com/wp-content/uploads/2015/03/Screen-Shot-2015-03-20-at-9.20.23-AM-1000x400.png

Years ago, my brother, Matt, explained to me that there are three ways to push out the productivity curve: technology, capital, or people.

When we increase productivity, we increase wealth. However, when we discuss how these three forces impact the labor market, we often focus singularly on how technology either creates or destroys jobs and wealth.

Our fear – not entirely misplaced – is that robots will render most of us useless, and in doing so, cleave society into those who control the machines (educated titans of industry), and those who fall victim to them (uneducated poor workers). In this future, the majority of humans – helpless and tired – fall by the way-side on the road to progress.

Read more

Hutan Ashrafian — nature.comhttp://images.sequart.org/images/i-robot-510ea6801c50a.jpg

There is a strong possibility that in the not-too-distant future, artificial intelligences (AIs), perhaps in the form of robots, will become capable of sentient thought. Whatever form it takes, this dawning of machine consciousness is likely to have a substantial impact on human society.

Microsoft co-founder Bill Gates and physicist Stephen Hawking have in recent months warned of the dangers of intelligent robots becoming too powerful for humans to control. The ethical conundrum of intelligent machines and how they relate to humans has long been a theme of science fiction, and has been vividly portrayed in films such as 1982’s Blade Runner and this year’s Ex Machina.Read more

Jason Koebler — MotherBoard

http://motherboard-images.vice.com/content-images/article/20326/1427390573566811.png?crop=1xw:0.8160465116279069xh;*,*&resize=2300:*&output-format=jpeg&output-quality=90It’s increasingly looking like the plane that crashed Monday in France, killing 150 people, went down because one of the pilots ​turned off the autopilot and intentionally crashed it into the ground. Why are we still letting humans fly passenger planes?

The short answer is, we’re not really. It’s no secret that planes are already highly automated, and, with technology that’s available today (but that isn’t installed on the Airbus A320 operated by Germanwings that crashed), it would have been possible for someone in a ground station somewhere to have wrested control of the plane from those on board and reestablished autopilot (or to have piloted the plane from the ground)Read more

Quoted: “Ethereum’s developers believe their project will lead to the proliferation of programs they call “smart contracts,” in which the terms of an agreement are written in code and enforced by software. These smart contracts could carry out the instructions of a complex algorithm based on data feed—such as a stock ticker. They could facilitate practically any financial transaction, such as holding money in escrow or dispersing micropayments among autonomous machines. They could be used to create a peer-to-peer gambling network, a peer-to-peer stock trading platform, a peer-to-peer social network, a prenuptial agreement, a will, a standard agreement to split a dinner check, or a public registry for keeping track of who owns what land in a city.

Gupta predicts that these smart contracts will be so cheap and versatile that they’ll do “a lot of things that today we do informally,” and take on a lot of the “donkey work of running a society.””

Read the article here > http://reason.com/blog/2015/03/19/here-comes-ethereum-an-information-techn

Quoted: “Once you really solve a problem like direct brain-computer interface … when brains and computers can interact directly, to take just one example, that’s it, that’s the end of history, that’s the end of biology as we know it. Nobody has a clue what will happen once you solve this. If life can basically break out of the organic realm into the vastness of the inorganic realm, you cannot even begin to imagine what the consequences will be, because your imagination at present is organic. So if there is a point of Singularity, as it’s often referred to, by definition, we have no way of even starting to imagine what’s happening beyond that.”

Read the article here > http://www.theamericanconservative.com/dreher/silicon-valley-mordor/

Steven Kotler — Forbes
singularity-university-summit-europe-1000x400
*This article co-written with author Ken Goffman.

One of the things that happens when you write books about the future is you get to watch your predictions fail. This is nothing new, of course, but what’s different this time around is the direction of those failures.

Used to be, folks were way too bullish about technology and way too optimistic with their predictions. Flying cars and Mars missions being two classic—they should be here by now—examples. The Jetsons being another.

But today, the exact opposite is happening.
Read more