Toggle light / dark theme

Since the dawn of time, humankind has looked to the skies and sought to conquer them. For thousands of years we tried and failed until, at last, we could soar amongst the birds. We built biplanes that danced upon gusts of wind, strapped sails to our back and leapt off fog-drenched mountaintops, launched warplanes into the wild blue yonder to rain terror from above. The heavens were soon streaked with the vapor trails of jumbo jets; the oligarchy used its deep pockets for casual jaunts to the threshold of outer space. And then, with the skies at last firmly in our dominion, we once again turned our eyes upward and declared, “Know what would look great up there? Pizza.”

The technology to flood our skies with millions of pizza boxes does not exist just yet, but it’s taken a huge leap forward in Israel, where, The Wall Street Journal reports, Pizza Hut is launching the world’s first ever full-time drone delivery service. The pilot program is being heavily regulated by the government, and Pizza Hut’s human delivery drivers don’t need to worry about being replaced (yet), as the drones will not be making direct-to-customer drop-offs. Instead, the flying robots will bring multiple orders to designated landing zones outside of Pizza Hut’s normal delivery radius, where they’ll be picked up by a driver who will take the pizzas to their final destinations.

The drones’ home base will be a Pizza Hut located in Bnei Dror in Northern Israel, and will allow the restaurant to provide delivery service to an additional 7000 households. The Ministry of Transportation has limited the drones’ flight area to about 50 square miles, and each drone’s limited battery life means there’s little chance of one going rogue.

A friend recently asked me “what do we mean by civilian space development”.Such a question made me understand that, maybe, we were not clear enough about the title of our congress, the Civilian Space Development. Following such understanding, I tried to draw a better rationale, aware that what we wrote was not that self-explanatory as we thought.

It was observed that NASA is a civilian agency, not a military one. And that the commercial space effort is civilian process, not a military one.

London, 15 January, 2021 — OneWeb, the Low Earth Orbit (LEO) satellite communications company jointly owned by the UK Government and Bharti Global, announced today that it has secured additional funding from SoftBank Group Corp. (“SoftBank”) and Hughes Network Systems LLC (“Hughes”), bringing OneWeb’s total funding to $1.4 billion. The capital raised to date positions the Company to be fully funded for its first-generation satellite fleet, totaling 648 satellites, by the end of 2022.

OneWeb’s mission is to deliver broadband connectivity worldwide to bridge the global Digital Divide by offering everyone, everywhere access including to the Internet of Things (IoT) future and a pathway to 5G. OneWeb’s LEO satellite system includes a network of global gateway stations and a range of user terminals for different customer markets capable of delivering affordable, fast, high-bandwidth and low-latency communications services. In December 2020, OneWeb launched 36 new satellites, built at its Airbus Joint Venture assembly plant in Florida, USA, bringing the Company’s total fleet to 110 satellites, all fully-functioning and benefitting from International Telecommunication Union spectrum priority.

Sunil Bharti Mittal, Executive Chairman of OneWeb, commented, “We are delighted to welcome the investment from SoftBank and Hughes. Both are deeply familiar with our business, share our vision for the future, and their commitment allows us to capitalise on the significant growth opportunity ahead for OneWeb. We gain from their experience and capabilities, as we deliver a unique LEO network for the world.”

Dr. Halima Benbouza is an Algerian scientist in the field of agronomic sciences and biological engineering.

She received her doctorate in 2004 from the University Agro BioTech Gembloux, Belgium studying Plant Breeding and Genetics and was offered a postdoctoral position to work on a collaborative project with the Agricultural Research Service, United States Department of Agriculture in Stoneville, Mississippi.

Subsequently, Dr. Benbouza was funded by Dow Agro Science to study Fusarium wilt resistance in cotton. In 2009 she was awarded the Special Prize Eric Daugimont et Dominique Van der Rest by the University Agro BioTech Gembloux, Belgium.

Dr. Benbouza is Professor at Batna 1 University where she teaches graduate and postgraduate students in the Institute of Veterinary Medicine and Agronomy. She also supervises Master’s and PhD students.

From 2010–2016, Dr. Benbouza served as inaugural Director of the Biotechnology Research Center (CRBt) in Constantine, appointed by the Ministry of Higher Education and Scientific Research. In 2011, she was appointed by the Algerian government as President of the Intersectoral Commission of Health and Life Sciences. Dr. Benbouza is a member of the Algerian National Council for Research Evaluation and a past member of the Sectorial Permanent Board of the Ministry of Higher Education and Scientific Research.

In 2013, Dr. Benbouza was appointed by the Prime Minister as President of the steering committee of Algeria’s Biotech Pharma project. In 2014 she was honored by the US Embassy in Algiers as one of the “Women in Science Hall of Fame” for her research achievements and her outstanding contribution to promote research activities and advance science in her country.

There’s a new crop of supersonic aircraft beginning to sprout, thanks to advances in engine, materials and satellite weather tracking that will enable aircraft to break the sound barrier over land without the disruptive noise pollution of a sonic boom reaching the ground.

Aerion, Boom and Spike, for three examples, are working on supersonic business jets. Virgin Galactic is looking to bring the time savings of Mach 3 travel to a slightly broader passenger market. One of the issues, of course, is that supersonic flight has long been illegal over US soil, boomless cruise or no boomless cruise. But the US Government wants to set the regulatory agenda internationally, and has instructed the FAA to take a leadership role as the sector develops.

Supersonic flight over American soil will remain prohibited, but new regulations will streamline the process through which these companies can apply for specific exemptions, clearing away some of the red tape and offering a clear path for flight testing over land.

Atmospheric Water Extraction (AWE) performers aim to meet clean water needs of deployed troops, even in austere environments.

Like.

Comment.


DARPA recently awarded five contracts and selected one Government partner to develop technology to capture potable water from the air in quantities sufficient to meet critical DoD needs, even in extremely dry climates. GE Research, Physical Sciences Inc., Honeywell International Inc., Massachusetts Institute of Technology, University of Texas at Austin, and U.S. Naval Research Laboratory were chosen to develop next-generation, scalable sorbent materials and prototypes under DARPA’s Atmospheric Water Extraction (AWE) program.

The goal of the AWE program is to provide fresh water for a range of military, stabilization, and humanitarian needs through the development of small, lightweight, low-powered, distributable systems that extract moisture from the atmosphere. DARPA is open to various approaches, with an emphasis on advanced sorbents that can rapidly extract water from ambient air and release it quickly with minimal energy inputs. These sorbent materials offer potential solutions to the AWE challenge, provided they can be produced at the necessary scale and remain stable over thousands of extraction cycles. In addition to developing new sorbents, AWE researchers will need to engineer systems to optimize their suitability for highly mobile forces by substantially reducing the size, weight, and power requirements compared to existing technologies.

“Access to clean water is of critical importance to the warfighter, and current water distribution operations incur numerous financial, maintenance, and logistical challenges,” noted Dr. Seth Cohen, AWE program manager. “The selected AWE program performers are being asked to leverage advanced modeling, innovative engineering, and additive manufacturing methods to support the program, which in turn will help maintain combat readiness, reduce casualties and cost due to water transportation, and enhance humanitarian and disaster relief efforts.”

New initiative aims to lower high barrier to entry for resource-constrained organizations, increasing access to participate in forward-looking research.

Like.

Comment.


As the world continues to change and advance at a rapid pace, the need for continuous innovation has never been greater. DARPA’s open innovation model leverages the expertise and novel ideation found in large and small businesses, government organizations, and academic institutions. However, resource constraints across these organizations can limit their participation in cutting-edge research opportunities. Within the microelectronics arena in particular, skyrocketing costs for designing integrated circuits are stifling participation in the innovation process.

To help remove potential roadblocks to further increasing the speed of innovation, the agency today announced DARPA Toolbox – a new, agency-wide effort to provide open licensing opportunities with commercial technology vendors to the researchers behind DARPA programs. Through DARPA Toolbox, successful proposers will receive greater access to commercial vendors’ technologies and tools via pre-negotiated, low-cost, non-production access frameworks and simplified legal terms. For commercial vendors, DARPA Toolbox will provide an opportunity to leverage the agency’s forward-looking research and a chance to develop new revenue streams based on programmatic achievements developed with their technologies.

“DARPA performers are frequently encumbered by having to negotiate access to tools, IP, and services, and execute complex legal agreements that take the time away from what they do best – advancing science to benefit the nation,” said Serge Leef, the Microsystems Technology Office (MTO) program manager spearheading this effort. “Through DARPA Toolbox, we are working to effectively lower the high barrier to entry with the goal of encouraging more proposals from non-traditional and resource-constrained organizations that can bring innovative insights and ideas to bear on DARPA programs.”

The arrival of government-operated autonomous police robots does not look like predictions in science fiction movies. An army of robots with gun arms is not kicking down your door to arrest you. Instead, a robot snitch that looks like a rolling trash can is programmed to decide whether a person looks suspicious —and then call the human police on them. Police robots may not be able to hurt people like armed predator drones used in combat— yet —but as history shows, calling the police on someone can prove equally deadly.

Long before the 1987 movie Robocop, even before Karel Čapek invented the word robot in 1920, police have been trying to find ways to be everywhere at once. Widespread security cameras are one solution—but even a blanket of CCTV cameras couldn’t follow a suspect into every nook of public space. Thus, the vision of a police robot continued as a dream, until now. Whether they look like Boston Dynamics’ robodogs or Knightscope’s rolling pickles, robots are coming to a street, shopping mall, or grocery store near you.

The Orwellian menace of snitch robots might not be immediately apparent. Robots are fun. They dance. You can take selfies with them. This is by design. Both police departments and the companies that sell these robots know that their greatest contributions aren’t just surveillance, but also goodwill. In one brochure Knightscope sent to University of California-Hastings, a law school in the center of San Francisco, the company advertises their robot’s activity in a Los Angeles shopping district called The Bloc. It’s unclear if the robot stopped any robberies, but it did garner over 100000 social media impressions and Knightscope claims the robot’s 193 million overall media impressions was worth over $5.8 million. The Bloc held a naming contest for the robot, and said it has a “cool factor” missing from traditional beat cops and security guards.

Scientists have figured out a cheaper, more efficient way to conduct a chemical reaction at the heart of many biological processes, which may lead to better ways to create biofuels from plants.

Scientists around the world have been trying for years to create biofuels and other bioproducts more cheaply; this study, published today in the journal Scientific Reports, suggests that it is possible to do so.

“The process of converting sugar to alcohol has to be very efficient if you want to have the end product be competitive with ,” said Venkat Gopalan, a senior author on the paper and professor of chemistry and biochemistry at The Ohio State University. “The process of how to do that is well-established, but the cost makes it not competitive, even with significant government subsidies. This new development is likely to help lower the cost.”

U.S. Navy Chief Artificial Intelligence Officer, and AI Portfolio Manager, Office of Naval Research.


Brett Vaughan is the U.S. Navy Chief Artificial Intelligence (AI) Officer and AI Portfolio Manager at the Office of Naval Research (ONR).

Mr. Vaughan has 30 years of Defense Intelligence and Technology expertise with strengths in military support, strategic communications, geospatial intelligence (GEOINT), Naval Intelligence and Navy R&D.

He spent two decades in various roles at the National Geospatial-Intelligence Agency (NGA), an additional 10 years in intelligence roles in the Office of the Chief of Naval Operations, and was recently appointed to his current role in 2019.

Mr. Vaughan has Master’s Degrees in Environmental Science from Johns Hopkins University, and in National Security and Strategic Studies from the Naval War College, as well as a Bachelor’s Degree in Geography and Cartography, from University of Mary Washington.

The U.S. Office of Naval Research (ONR) is an organization within the United States Department of the Navy responsible for the science and technology programs of the U.S. Navy and Marine Corps.

Established by Congress in 1946, its mission is to plan, foster, and encourage scientific research to maintain future naval power and preserve national security.

The Office of Naval Research carries out its mission through funding and collaboration with universities, other government laboratories, nonprofit and for-profit organizations, and also oversees the Naval Research Laboratory, the corporate research laboratory for the Navy and Marine Corps, which conducts a broad program of scientific research, technology and advanced development, and has a prestigious history, including the development of the first U.S. radar system, synthetic lubricants, and surveillance satellites.