Toggle light / dark theme

Could a mathematical model help predict future mutations of the coronavirus and guide scientists’ research as they rush to develop an effective vaccine? This is a possibility being considered by researchers at the USC Viterbi School of Engineering—Ph. D. students Ruochen Yang and Xiongye Xiao and Paul Bogdan, an associate professor of electrical and computer engineering.

Over the past year, Yang and Bogdan have worked to develop a model that could be used to investigate the relationship between a network and its parts to find patterns and make predictions. Now, Xiao is applying that successful model to the current pandemic. He is examining the RNA sequence of SARS-CoV-2, also known as coronavirus, to determine whether accurate predictions can be made about how its genetic code might change in the future based on past mutations. This research is still in progress and no conclusions have been reached yet.

Published in Nature Scientific Reports, a sister journal of Nature, Yang and Bogdan’s work is detailed in their paper, “Controlling the Multifractal Generating Measures of Complex Networks.”

Researchers from Northwest University’s medical school in Chicago believe a mutation in the coronavirus has made it considerably more contagious.

Infection disease special Egon Ozer of the Feinberg School of Medicine has said that upon examining the genetic structure of coronavirus samples, it was evident there was a change in one of the amino acids that allowed a spike in protein on the surface of the virus.

In layman’s terms, this change has allowed the virus to penetrate nearby cells easier, and as a result the virus can replicate faster and be passed on easier.

Scientists at Johns Hopkins Medicine have found types of cells in the brain that are most susceptible to inherited genetic variants linked to schizophrenia. As a result, their work reveals a shortlist of the variants that most likely impact disease risk.

Details of the scientists’ analysis, published April 17, 2020, in Genome Research, compared human genetic studies with data on how DNA is folded in , including a diversity of .

“Every common has a major genetic component at its root,” says Andrew McCallion, Ph.D., professor of genetic medicine at the Johns Hopkins University School of Medicine. “Studying genomes across helps us find the genetic landmarks that are linked to disease, but these often don’t give us the biological insight that pinpoints the cells in which that variation acts to impact disease risk.”

But for every insight into COVID-19, more questions emerge and others linger. That is how science works. To mark six months since the world first learnt about the disease responsible for the pandemic, Nature runs through some of the key questions that researchers still don’t have answers to.


From immunity to the role of genetics, Nature looks at five pressing questions about COVID-19 that researchers are tackling. Six months into the outbreak, Nature looks at the pressing questions that researchers are tackling.

If there’s one myth that has persisted through the years without much evidence, it’s this: multiply your dog’s age by seven to calculate how old they are in “human years.” In other words, the old adage says, a four-year-old dog is similar in physiological age to a 28-year-old person.

But a new study by researchers at University of California San Diego School of Medicine throws that out the window. Instead, they created a formula that more accurately compares the ages of humans and dogs. The formula is based on the changing patterns of methyl groups in dog and human genomes — how many of these chemical tags and where they’re located — as they age. Since the two species don’t age at the same rate over their lifespans, it turns out it’s not a perfectly linear comparison, as the 1:7 years rule-of-thumb would suggest.

A team of researchers affiliated with several institutions in South Korea has found that stimulating production of a certain enzyme in roundworms can increase their lifespan. In their paper published in the journal Science Advances, the group describes their study of the protein VRK-1 and what they learned about its impact on the longevity of roundworms.

Prior research has shown that one way to increase longevity in some species is to use techniques that slow down mitochondrial respiration. In this new effort, the researchers were looking to better understand why slowing in mitochondria has an impact on aging. As part of their effort, they looked at an energy sensor in mitochondria called adenosine 5’-monophosphate-activated (AMPK), known to play a role in controlling how much energy is used in cells in roundworms. Prior research had suggested its level of activity is controlled by the protein VRK-1. To learn more about its impact on aging, the researchers genetically engineered two lines of roundworms to force them to produce more VRK-1 and two lines of roundworms to force them to produce less VRK-1. They then monitored the roundworms to see how long they lived.

The researchers found those roundworms expressing more than the normal amount of VRK-1 tended to live longer than average, while those expressing less than average amounts of VRK-1 had shorter lifespans. More specifically, control worms representing the normal lifespan of a lived on average 16.9 days. In their experiments, one of the lines expressing more VRK-1 lived on average 20.8 days, while the other lived on average 23.7 days. And one of the lines producing less VRK-1 lived on average just 12.7 days and the other just 15.9 days. The researchers suggest this finding indicates that VRK-1 has a direct impact on roundworm longevity.

A team of quantitative biology researchers from Northwestern University have uncovered new insights into the impact of stochasticity in gene expression, offering new evolutionary clues into organismal design principles in the face of physical constraints.

In cells, are expressed through transcription, a process where genetic information encoded in DNA is copied into messenger RNA (mRNA). The mRNA is then translated to make , the workhorses of cells. This entire process is subject to bursts of natural stochasticity—or randomness—which can impact the outcome of biological processes that proteins carry out.

The researchers’ new experimental and theoretical analyses studied a collection of genes in Drosophila, a family of fruit flies, and found that gene expression is regulated by the frequency of these transcriptional bursts.

The Kingsley team pored over genetic data repositories, searching for places in the genetic code near the KITLG gene that tell the gene what to do. They found a location in the DNA where proteins known as transcription factors bind to the sequence and carry out the instructions specified in the code.

They discovered that if the nucleotide guanine holds that spot, the transcription factor cannot bind as tightly to the DNA as when another nucleotide (adenine) is in the same position. This simple alteration – replacing A with G in the DNA sequence – reduces the expression of the gene and, ultimately, changes the colour of the hair.

Guenther’s blue-flecked mice prove that the Kingsley group found the spot on the genome that informs hair follicles how much melanin to incorporate into hair.

3 things:

1. The company claims that it has been successful in reducing the epigenetic age of participants(17 people) by an average of 8.5 years with its dietary supplement Rejuvant.

2. Obviously, this has yet to be proven conclusively in human trials, and the company is busy preparing to launch a larger-scale trial later this year to that end.

3. I want to know if it reset telomeres.


Today, we want to highlight a press release from Ponce de Leon Health that talks about the results of a pilot consumer trial that the company has recently concluded. The company claims that it has been successful in reducing the epigenetic age of participants by an average of 8.5 years with its dietary supplement Rejuvant.

Ponce de Leon Health initially worked with Dr. Brian Kennedy, who was, at the time, based at the Buck Institute for Research on Aging, searching for compounds that were generally recognized as safe (GRAS) but that had the potential to influence aging in mammals. The company screened over 300 GRAS compounds and identified compounds that could modulate a number of pathways that are linked to aging. These compounds affected the mTOR pathway, blocked the proinflammatory secretions made by senescent cells, affected genomic stability pathways, aided in ammonia detoxification, and supported protein homeostasis.

Dr. Kennedy subsequently joined Ponce de Leon Health as its Chief Scientific Officer, and the company has been busy testing and preparing to translate these findings to people. Its strategy has been to test its products on mammalian models that closely emulate human aging in order to give the best chance of translating beneficial results to us.

Whole genome duplication followed by massive gene loss has shaped many genomes, including the human genome. Why some gene duplicates are retained while most perish has puzzled scientists for decades.

A study, published today in Science, has found that gene retention depends on the degree of “functional and structural entanglement”, which measures interdependency between gene structure and function. In other words, while most duplicates either become obsolete or they evolve new roles, some are retained forever because, evolutionarily speaking, they’re simply stuck.

“When we scan genomes there are some gene pairs that remain from events that occurred millions of years ago,” says Elena Kuzmin, a co-lead author of the study and former graduate student who trained with Charles Boone, professor of molecular genetics in the Donnelly Centre for Cellular and Biomolecular Research, at the University of Toronto, who co-led the study.