Toggle light / dark theme

Researchers have made a breakthrough genetic discovery into the cause of a spectrum of severe neurological conditions.

A research study, led by the Murdoch Children’s Research Institute (MCRI) and gracing the cover of and published in the October edition of Human Mutation, found two new in the KIF1A gene cause rare nerve disorders.

MCRI researcher Dr. Simranpreet Kaur said mutations in the KIF1A gene caused ‘traffic jams’ in , called neurons, triggering a devastating range of progressive brain disorders. KIF1A-Associated Neurological Disorders (KAND) affects about 300 children worldwide.

Anxious couples are approaching fertility doctors in the US with requests for a hotly debated new genetic test being called “23andMe, but on embryos.”

The baby-picking test is being offered by a New Jersey startup company, Genomic Prediction, whose plans we first reported on two years ago.

The company says it can use DNA measurements to predict which embryos from an IVF procedure are least likely to end up with any of 11 different common diseases. In the next few weeks it’s set to release case studies on its first clients.

One of the most remarkable recent advances in biomedical research has been the development of highly targeted gene-editing methods such as CRISPR that can add, remove, or change a gene within a cell with great precision. The method is already being tested or used for the treatment of patients with sickle cell anemia and cancers such as multiple myeloma and liposarcoma, and today, its creators Emmanuelle Charpentier and Jennifer Doudna received the Nobel Prize in chemistry.

While is remarkably precise in finding and altering genes, there is still no way to target treatment to specific locations in the body. The treatments tested so far involve removing or immune system T cells from the body to modify them, and then infusing them back into a patient to repopulate the bloodstream or reconstitute an immune response—an expensive and time-consuming process.

Building on the accomplishments of Charpentier and Doudna, Tufts researchers have for the first time devised a way to directly deliver gene-editing packages efficiently across the and into specific regions of the brain, into immune system cells, or to specific tissues and organs in mouse models. These applications could open up an entirely new line of strategy in the treatment of neurological conditions, as well as cancer, infectious disease, and autoimmune diseases.

The genetic editing technique has contributed to new cancer therapies and has the potential to be used in curing inheritable diseases.


Two women were awarded the Nobel Prize in chemistry Wednesday for their pioneering work on genome editing, which has the life-saving potential to be used to cure genetic diseases.el Prize in chemistry Wednesday for their pioneering work on genome editing, which has the life-saving potential to be used to cure genetic diseases.el Prize in chemistry on Wednesday for developing a method for genome editing that could be used to cure many diseases.

A newly identified genetic factor allows adult skin to repair itself like the skin of a newborn babe. The discovery by Washington State University researchers has implications for better skin wound treatment as well as preventing some of the aging process in skin.

In a study, published in the journal eLife on September 29, 2020, the researchers identified a factor that acts like a molecular switch in the skin of baby mice that controls the formation of hair follicles as they develop during the first week of life. The switch is mostly turned off after skin forms and remains off in adult tissue. When it was activated in specialized cells in adult mice, their skin was able to heal wounds without scarring. The reformed skin even included fur and could make goosebumps, an ability that is lost in adult human scars.

“We were able to take the innate ability of young, neonatal skin to regenerate and transfer that ability to old skin,” said Ryan Driskell, an assistant professor in WSU’s School of Molecular Biosciences. “We have shown in principle that this kind of regeneration is possible.”

When the brain forms a memory of a new experience, neurons called engram cells encode the details of the memory and are later reactivated whenever we recall it. A new MIT study reveals that this process is controlled by large-scale remodeling of cells’ chromatin.

This remodeling, which allows involved in storing memories to become more active, takes place in multiple stages spread out over several days. Changes to the density and arrangement of chromatin, a highly compressed structure consisting of DNA and proteins called histones, can control how active specific genes are within a given cell.

“This paper is the first to really reveal this very mysterious process of how different waves of genes become activated, and what is the epigenetic mechanism underlying these different waves of gene expression,” says Li-Huei Tsai, the director of MIT’s Picower Institute for Learning and Memory and the senior author of the study.

Summary: The ability to foster and form secure interpersonal attachments can mitigate some of the genetic risks associated with PTSD.

Source: Yale

Researchers at Yale and elsewhere previously identified a host of genetic risk factors that help explain why some veterans are especially susceptible to the debilitating symptoms of post-traumatic stress disorder (PTSD).

An experimental new vaccine claims to be able to change human DNA and could be deployed against COVID-19 by 2021 through a biochip implant.


The most significant scientific discovery since gravity has been hiding in plain sight for nearly a decade and its destructive potential to humanity is so enormous that the biggest war machine on the planet immediately deployed its vast resources to possess and control it, financing its research and development through agencies like the National Institutes of Health (NIH), the Defense Advanced Research Projects Agency (DARPA) and HHS’ BARDA.

The revolutionary breakthrough came to a Canadian scientist named Derek Rossi in 2010 purely by accident. The now-retired Harvard professor claimed in an interview with the National Post that he found a way to “reprogram” the molecules that carry the genetic instructions for cell development in the human body, not to mention all biological lifeforms.

These molecules are called ‘messenger ribonucleic acid’ or mRNA and the newfound ability to rewrite those instructions to produce any kind of cell within a biological organism has radically changed the course of Western medicine and science, even if no one has really noticed yet. As Rossi, himself, puts it: “The real important discovery here was you could now use mRNA, and if you got it into the cells, then you could get the mRNA to express any protein in the cells, and this was the big thing.”

In the coming 2020s, the world of medical science will make some significant breakthroughs. Through brain implants, we will have the capability to restore lost memories.

~ The 2020s will provide us with the computer power to make the first complete human brain simulation. Exponential growth in computation and data will make it possible to form accurate models of every part of the human brain and its 100 billion neurons.

~ The prototype of the human heart was 3D printed in 2019. By the mid- 2020s, customized 3D- printing of major human body organs will become possible. In the coming decades, more and more of the 78 organs in the human body will become printable.

…As we enter into the next few decades, we will have the technologies that grant us the possibility of immortality, albeit one that is highly subjective.

With our ability to 3D print new body organs, our ability to use nanotechnology in fighting death at cellular levels, our ability to use CRISPR or other gene-editing technology to rewrite our definition of humans and even our ability to capture and extend our consciousness beyond the confines of the biological weakness of our human bodies — immortality may be within reach of our fingers as depicted in the painting of Michelangelo.

The race to human 2.0 will be run broadly in two spectrums — the evolution of our body and the evolution of our minds.

Excerpt from my book — 2020s & The Future Beyond.

#Future #Humanity #Transhumanism